Six-Bar Linkages With Compliant Mechanisms for an Adaptive Robot

M. Pieber, J. Gerstmayr
{"title":"Six-Bar Linkages With Compliant Mechanisms for an Adaptive Robot","authors":"M. Pieber, J. Gerstmayr","doi":"10.1115/detc2020-22546","DOIUrl":null,"url":null,"abstract":"\n Programmable structures are formed by autonomous and adaptive triangular cells. However, they are composed of a large number of parts, specifically bearings, which make them laborious to manufacture and expensive. An essential part of these programmable structures are six-bar linkages, which allow to build cells that can preserve the underlying geometry of a triangular mesh. A major improvement, which is the main part of this paper, is to replace the joints of the six-bar-linkage by a compliant mechanism, which allows to manufacture them as one 3D printable part. A multibody system formulation is setup with the model of the compliant mechanisms, treating every joint either ideal or compliant with the given stiffness parameters. The multi-body formulation furthermore allows to include friction as well as an actuator model in a straight-forward manner. The overall stiffness parameter of the real system is then identified from a comparison with an experimental setup of a real compliant triangular cell. Finally, the model is used to show the deviations of a medium-scaled programmable structure with respect to the idealized behavior. The present paper marks a relevant step towards the realization of larger programmable structures as well as the development of 3D programmable structures.","PeriodicalId":365283,"journal":{"name":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Programmable structures are formed by autonomous and adaptive triangular cells. However, they are composed of a large number of parts, specifically bearings, which make them laborious to manufacture and expensive. An essential part of these programmable structures are six-bar linkages, which allow to build cells that can preserve the underlying geometry of a triangular mesh. A major improvement, which is the main part of this paper, is to replace the joints of the six-bar-linkage by a compliant mechanism, which allows to manufacture them as one 3D printable part. A multibody system formulation is setup with the model of the compliant mechanisms, treating every joint either ideal or compliant with the given stiffness parameters. The multi-body formulation furthermore allows to include friction as well as an actuator model in a straight-forward manner. The overall stiffness parameter of the real system is then identified from a comparison with an experimental setup of a real compliant triangular cell. Finally, the model is used to show the deviations of a medium-scaled programmable structure with respect to the idealized behavior. The present paper marks a relevant step towards the realization of larger programmable structures as well as the development of 3D programmable structures.
自适应机器人的柔性六杆机构
可编程结构由自主和自适应的三角形单元组成。然而,它们由大量零件组成,特别是轴承,这使得它们制造起来费力且昂贵。这些可编程结构的一个重要部分是六杆连杆,它允许构建可以保持三角形网格基本几何形状的单元。一个主要的改进,这是本文的主要部分,是用一个柔性机构取代六杆连杆的关节,这使得它们可以作为一个3D打印部件制造。建立了柔性机构的多体系统模型,在给定刚度参数下对每个关节进行理想或柔性处理。多体配方进一步允许以直接的方式包括摩擦以及致动器模型。然后,通过与实际柔性三角单元的实验装置的比较,确定了实际系统的总体刚度参数。最后,用该模型说明了中等规模可编程结构相对于理想行为的偏差。本文标志着实现更大的可编程结构以及三维可编程结构的发展迈出了相关的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信