{"title":"Aggregating over Dominated Points by Sorting, Scanning, Zip and Flat Maps","authors":"J. Sroka, Jerzy Tyszkiewicz","doi":"10.48550/arXiv.2305.16751","DOIUrl":null,"url":null,"abstract":"Prefix aggregation operation (also called scan), and its particular case, prefix summation, is an important parallel primitive and enjoys a lot of attention in the research literature. It is also used in many algorithms as one of the steps. Aggregation over dominated points in $\\mathbb{R}^m$ is a multidimensional generalisation of prefix aggregation. It is also intensively researched, both as a parallel primitive and as a practical problem, encountered in computational geometry, spatial databases and data warehouses. In this paper we show that, for a constant dimension $m$, aggregation over dominated points in $\\mathbb{R}^m$ can be computed by $O(1)$ basic operations that include sorting the whole dataset, zipping sorted lists of elements, computing prefix aggregations of lists of elements and flat maps, which expand the data size from initial $n$ to $n\\log^{m-1}n$. Thereby we establish that prefix aggregation suffices to express aggregation over dominated points in more dimensions, even though the latter is a far-reaching generalisation of the former. Many problems known to be expressible by aggregation over dominated points become expressible by prefix aggregation, too. We rely on a small set of primitive operations which guarantee an easy transfer to various distributed architectures and some desired properties of the implementation.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.16751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prefix aggregation operation (also called scan), and its particular case, prefix summation, is an important parallel primitive and enjoys a lot of attention in the research literature. It is also used in many algorithms as one of the steps. Aggregation over dominated points in $\mathbb{R}^m$ is a multidimensional generalisation of prefix aggregation. It is also intensively researched, both as a parallel primitive and as a practical problem, encountered in computational geometry, spatial databases and data warehouses. In this paper we show that, for a constant dimension $m$, aggregation over dominated points in $\mathbb{R}^m$ can be computed by $O(1)$ basic operations that include sorting the whole dataset, zipping sorted lists of elements, computing prefix aggregations of lists of elements and flat maps, which expand the data size from initial $n$ to $n\log^{m-1}n$. Thereby we establish that prefix aggregation suffices to express aggregation over dominated points in more dimensions, even though the latter is a far-reaching generalisation of the former. Many problems known to be expressible by aggregation over dominated points become expressible by prefix aggregation, too. We rely on a small set of primitive operations which guarantee an easy transfer to various distributed architectures and some desired properties of the implementation.