Gradient boosting model for unbalanced quantitative mass spectra quality assessment

Long Chen, T. Zhang, Tianjun Li
{"title":"Gradient boosting model for unbalanced quantitative mass spectra quality assessment","authors":"Long Chen, T. Zhang, Tianjun Li","doi":"10.1109/SPAC.2017.8304311","DOIUrl":null,"url":null,"abstract":"A method for controlling the quality of isotope labeled mass spectra is described here. In such mass spectra, the profiles of labeled (heavy) and unlabeled (light) peptide pairs provide us valuable information about the studied biological samples in different conditions. The core task of quality control in quantitative LC-MS experiment is to filter out low quality spectra or the peptides with error profiles. The most common used method for this problem is training a classifier for the spectra data to separate it into positive (high quality) and negative (low quality) ones. However, the small number of error profiles always makes the training data dominated by the positive samples, i.e., class imbalance problem. So the Syntheic minority over-sampling technique (SMOTE) is employed to handle the unbalanced data and then applied extreme gradient boosting (Xgboost) model as the classifier. We assessed the different heavy-light peptide ratio samples by the trained Xgboost classifier, and found that the SMOTE Xgboost classifier increases the reliability of peptide ratio estimations significantly.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A method for controlling the quality of isotope labeled mass spectra is described here. In such mass spectra, the profiles of labeled (heavy) and unlabeled (light) peptide pairs provide us valuable information about the studied biological samples in different conditions. The core task of quality control in quantitative LC-MS experiment is to filter out low quality spectra or the peptides with error profiles. The most common used method for this problem is training a classifier for the spectra data to separate it into positive (high quality) and negative (low quality) ones. However, the small number of error profiles always makes the training data dominated by the positive samples, i.e., class imbalance problem. So the Syntheic minority over-sampling technique (SMOTE) is employed to handle the unbalanced data and then applied extreme gradient boosting (Xgboost) model as the classifier. We assessed the different heavy-light peptide ratio samples by the trained Xgboost classifier, and found that the SMOTE Xgboost classifier increases the reliability of peptide ratio estimations significantly.
非平衡质谱定量质量评价的梯度增强模型
本文介绍了一种控制同位素标记质谱质量的方法。在这样的质谱中,标记(重)和未标记(轻)肽对的谱图为我们研究不同条件下的生物样品提供了有价值的信息。LC-MS定量实验质量控制的核心任务是过滤掉低质量光谱或具有误差分布的肽段。对于这个问题,最常用的方法是训练一个光谱数据分类器,将其分为正(高质量)和负(低质量)。然而,由于错误轮廓较少,训练数据往往被正样本所主导,即类不平衡问题。因此,采用合成少数过采样技术(SMOTE)处理不平衡数据,然后采用极端梯度增强(Xgboost)模型作为分类器。我们用训练好的Xgboost分类器评估了不同的重-轻肽比样本,发现SMOTE Xgboost分类器显著提高了肽比估计的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信