Query-based summarization using MDL principle

Marina Litvak, N. Vanetik
{"title":"Query-based summarization using MDL principle","authors":"Marina Litvak, N. Vanetik","doi":"10.18653/v1/W17-1004","DOIUrl":null,"url":null,"abstract":"Query-based text summarization is aimed at extracting essential information that answers the query from original text. The answer is presented in a minimal, often predefined, number of words. In this paper we introduce a new unsupervised approach for query-based extractive summarization, based on the minimum description length (MDL) principle that employs Krimp compression algorithm (Vreeken et al., 2011). The key idea of our approach is to select frequent word sets related to a given query that compress document sentences better and therefore describe the document better. A summary is extracted by selecting sentences that best cover query-related frequent word sets. The approach is evaluated based on the DUC 2005 and DUC 2006 datasets which are specifically designed for query-based summarization (DUC, 2005 2006). It competes with the best results.","PeriodicalId":113878,"journal":{"name":"MultiLing@EACL","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MultiLing@EACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Query-based text summarization is aimed at extracting essential information that answers the query from original text. The answer is presented in a minimal, often predefined, number of words. In this paper we introduce a new unsupervised approach for query-based extractive summarization, based on the minimum description length (MDL) principle that employs Krimp compression algorithm (Vreeken et al., 2011). The key idea of our approach is to select frequent word sets related to a given query that compress document sentences better and therefore describe the document better. A summary is extracted by selecting sentences that best cover query-related frequent word sets. The approach is evaluated based on the DUC 2005 and DUC 2006 datasets which are specifically designed for query-based summarization (DUC, 2005 2006). It competes with the best results.
使用MDL原理的基于查询的摘要
基于查询的文本摘要旨在从原始文本中提取回答查询的基本信息。答案是用最少的,通常是预定义的单词数来表示的。在本文中,我们引入了一种新的无监督方法,用于基于查询的提取摘要,该方法基于最小描述长度(MDL)原则,该原则采用了Krimp压缩算法(Vreeken et al., 2011)。我们方法的关键思想是选择与给定查询相关的频繁词集,这些词集可以更好地压缩文档句子,从而更好地描述文档。通过选择最能覆盖查询相关频繁词集的句子来提取摘要。该方法是基于DUC 2005和DUC 2006数据集进行评估的,这些数据集是专门为基于查询的摘要设计的(DUC, 2005 - 2006)。它与最好的结果竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信