Low-Cost Sequential Logic Circuit Design Considering Single Event Double-Node Upsets and Single Event Transients

R. Rajaei, M. Niemier, X. Hu
{"title":"Low-Cost Sequential Logic Circuit Design Considering Single Event Double-Node Upsets and Single Event Transients","authors":"R. Rajaei, M. Niemier, X. Hu","doi":"10.1109/ICCD53106.2021.00038","DOIUrl":null,"url":null,"abstract":"As CMOS device sizes continue to scale down, radiation-related reliability issues are of ever-growing concern. Single event double node upsets (SEDUs) in sequential logic and single event transients (SETs) in combinational logic are sources of high rate radiation-induced soft errors that can affect the functionality of logic circuits. This paper presents effective circuit-level solutions for combating SEDUs/SETs in nanoscale sequential and combinational logic circuits. More specifically, we propose and evaluate low-power latch and flip-flop circuits to mitigate SEDUs and SETs. Simulations with a 22 nm PTM model reveal that the proposed circuits offer full immunity against SEDUs, can better filter SET pulses, and simultaneously reduce design overhead when compared to prior work. As a representative example, simulation-based studies show that our designs offer up to 77% improvements in delay-power-area product, and can filter out up to 58% wider SET pulses when compared to the state-of-the-art.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As CMOS device sizes continue to scale down, radiation-related reliability issues are of ever-growing concern. Single event double node upsets (SEDUs) in sequential logic and single event transients (SETs) in combinational logic are sources of high rate radiation-induced soft errors that can affect the functionality of logic circuits. This paper presents effective circuit-level solutions for combating SEDUs/SETs in nanoscale sequential and combinational logic circuits. More specifically, we propose and evaluate low-power latch and flip-flop circuits to mitigate SEDUs and SETs. Simulations with a 22 nm PTM model reveal that the proposed circuits offer full immunity against SEDUs, can better filter SET pulses, and simultaneously reduce design overhead when compared to prior work. As a representative example, simulation-based studies show that our designs offer up to 77% improvements in delay-power-area product, and can filter out up to 58% wider SET pulses when compared to the state-of-the-art.
考虑单事件双节点扰流和单事件瞬变的低成本顺序逻辑电路设计
随着CMOS器件尺寸的不断缩小,与辐射相关的可靠性问题日益受到关注。顺序逻辑中的单事件双节点扰动(SEDUs)和组合逻辑中的单事件瞬变(SETs)是高速率辐射引起的软误差的来源,可以影响逻辑电路的功能。本文提出了在纳米级顺序和组合逻辑电路中对抗sedu / set的有效电路级解决方案。更具体地说,我们提出并评估了低功耗锁存器和触发器电路,以减轻sedu和set。利用22 nm PTM模型进行的仿真表明,与之前的工作相比,所提出的电路对sedu具有完全的抗扰性,可以更好地过滤SET脉冲,同时降低了设计开销。作为一个代表性的例子,基于仿真的研究表明,我们的设计在延迟功率面积产品方面提供了高达77%的改进,并且与最先进的相比,可以过滤出高达58%的宽SET脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信