High/low-side hybrid output transistor with high thermal-SOA

S. Wada, Katsumi Ikegaya, T. Oshima, Y. Kobayashi
{"title":"High/low-side hybrid output transistor with high thermal-SOA","authors":"S. Wada, Katsumi Ikegaya, T. Oshima, Y. Kobayashi","doi":"10.23919/ISPSD.2017.7988897","DOIUrl":null,"url":null,"abstract":"A novel high/low-side hybrid output transistor with high thermal safe operating area (SOA) performance was developed. The output transistor was designed by alternatively arranging high- and low-side transistors to enhance the thermal diffusion from self-heated transistors. A 42% increase in the failure energy of the conventional transistor was obtained at 300-μs short-circuit duration, and a further 10–15% improvement was obtained by introducing a Cu redistribution layer (Cu-RDL) of power metal. A 3D-thermal simulation demonstrated that the peak junction temperature was reduced by around 100°C in the hybrid output transistor during clamp inductive switching. The energy capability of the hybrid output transistor also improved from 18 to 31 mJ in the solenoid driver circuit.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel high/low-side hybrid output transistor with high thermal safe operating area (SOA) performance was developed. The output transistor was designed by alternatively arranging high- and low-side transistors to enhance the thermal diffusion from self-heated transistors. A 42% increase in the failure energy of the conventional transistor was obtained at 300-μs short-circuit duration, and a further 10–15% improvement was obtained by introducing a Cu redistribution layer (Cu-RDL) of power metal. A 3D-thermal simulation demonstrated that the peak junction temperature was reduced by around 100°C in the hybrid output transistor during clamp inductive switching. The energy capability of the hybrid output transistor also improved from 18 to 31 mJ in the solenoid driver circuit.
具有高热soa的高/低侧混合输出晶体管
研制了一种具有高热安全工作区域(SOA)性能的新型高/低侧混合输出晶体管。输出晶体管采用高低侧晶体管交替排列的方式设计,以增强自热晶体管的热扩散。在短路时间为300 μs时,传统晶体管的失效能量提高了42%,在功率金属中引入Cu重分布层(Cu- rdl)后,失效能量进一步提高了10-15%。三维热模拟表明,在钳位电感开关过程中,混合输出晶体管的峰值结温降低了约100°C。在电磁驱动电路中,混合输出晶体管的能量能力也从18 mJ提高到31 mJ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信