An Overview of Intrusion Detection Based on Data Mining Techniques

K. Wankhade, G. H. Raisoni, Sadia Patka, M. T. Student, Ravinrda Thool
{"title":"An Overview of Intrusion Detection Based on Data Mining Techniques","authors":"K. Wankhade, G. H. Raisoni, Sadia Patka, M. T. Student, Ravinrda Thool","doi":"10.1109/CSNT.2013.134","DOIUrl":null,"url":null,"abstract":"Intrusion Detection System (IDS) is a vital component of any network in today's world of Internet. IDS are an effective way to detect different kinds of attacks in interconnected network. An effective Intrusion Detection System requires high accuracy and detection rate as well as low false alarm rate. Different Data Mining techniques such as clustering and classification are proving to be useful for analyzing and dealing with large amount of network traffic. This paper presents various data mining techniques applied on intrusion detection systems for the effective identification of both known and unknown patterns of attacks, to develop secure information systems.","PeriodicalId":111865,"journal":{"name":"2013 International Conference on Communication Systems and Network Technologies","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2013.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Intrusion Detection System (IDS) is a vital component of any network in today's world of Internet. IDS are an effective way to detect different kinds of attacks in interconnected network. An effective Intrusion Detection System requires high accuracy and detection rate as well as low false alarm rate. Different Data Mining techniques such as clustering and classification are proving to be useful for analyzing and dealing with large amount of network traffic. This paper presents various data mining techniques applied on intrusion detection systems for the effective identification of both known and unknown patterns of attacks, to develop secure information systems.
基于数据挖掘技术的入侵检测研究综述
在当今的互联网世界中,入侵检测系统(IDS)是任何网络的重要组成部分。入侵检测是检测互联网络中各种攻击的有效手段。一个有效的入侵检测系统需要较高的准确率和检测率,以及较低的虚警率。不同的数据挖掘技术,如聚类和分类,被证明对分析和处理大量网络流量非常有用。本文介绍了应用于入侵检测系统的各种数据挖掘技术,以有效识别已知和未知的攻击模式,从而开发安全的信息系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信