Normalized gradient fields and mutual information for motion correction of DCE-MRI images

E. Hodneland, A. Lundervold, J. Rørvik, A. Munthe-Kaas
{"title":"Normalized gradient fields and mutual information for motion correction of DCE-MRI images","authors":"E. Hodneland, A. Lundervold, J. Rørvik, A. Munthe-Kaas","doi":"10.1109/ISPA.2013.6703795","DOIUrl":null,"url":null,"abstract":"Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of the kidney typically displays spatial motion and undesired artefacts due to unavoidable patient movement and physiological pulsations, with the effect of corrupting voxel-wise signal intensity changes arising from contrast agent wash-in and wash-out. Image registration is a necessary tool to counteract such motion artefacts and to estimate physiological parameters reliably. In this work, we present a fluid-registration-based method for deformable multimodal image registration based on normalized gradients, particularly well suited to handle the motion challenges in DCE-MRI time series. We evaluate and confirm that both normalized gradients and mutual information are high-performing cost functionals for co-registration of DCE-MRI time series. Further, there are indications that normalized gradients have better performance than mutual information on this kind of images. These results promote normalized gradients as a promising tool for proper motion correction of DCE-MRI images applied in the clinic or in biomedical research.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of the kidney typically displays spatial motion and undesired artefacts due to unavoidable patient movement and physiological pulsations, with the effect of corrupting voxel-wise signal intensity changes arising from contrast agent wash-in and wash-out. Image registration is a necessary tool to counteract such motion artefacts and to estimate physiological parameters reliably. In this work, we present a fluid-registration-based method for deformable multimodal image registration based on normalized gradients, particularly well suited to handle the motion challenges in DCE-MRI time series. We evaluate and confirm that both normalized gradients and mutual information are high-performing cost functionals for co-registration of DCE-MRI time series. Further, there are indications that normalized gradients have better performance than mutual information on this kind of images. These results promote normalized gradients as a promising tool for proper motion correction of DCE-MRI images applied in the clinic or in biomedical research.
归一化梯度场和互信息用于DCE-MRI图像的运动校正
肾脏动态对比增强磁共振成像(DCE-MRI)通常显示空间运动和不希望的伪影,这是由于不可避免的患者运动和生理脉动,以及造影剂冲洗和冲洗引起的破坏体素信号强度变化的影响。图像配准是消除运动伪影和可靠估计生理参数的必要工具。在这项工作中,我们提出了一种基于流体配准的基于归一化梯度的可变形多模态图像配准方法,特别适合处理DCE-MRI时间序列中的运动挑战。我们评估并确认了归一化梯度和互信息都是用于DCE-MRI时间序列共配准的高性能成本函数。此外,有迹象表明,在这类图像上,归一化梯度比互信息具有更好的性能。这些结果促进了归一化梯度在临床或生物医学研究中应用于DCE-MRI图像适当运动校正的有希望的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信