An Enhanced Scheme for Privacy-Preserving Association Rules Mining on Horizontally Distributed Databases

Xuan Canh Nguyen, H. Le, T. A. Cao
{"title":"An Enhanced Scheme for Privacy-Preserving Association Rules Mining on Horizontally Distributed Databases","authors":"Xuan Canh Nguyen, H. Le, T. A. Cao","doi":"10.1109/rivf.2012.6169821","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Enhanced M.Hussein et al.'s Scheme (EMHS) for privacy-preserving association rules mining on horizontally distributed databases. EMHS is based on the M.Hussein et al.'s Scheme (MHS) proposed in 2008 and improves privacy and performance when increasing the number of sites. EMHS uses two servers, Initiator and Combiner, combined with MFI approach to generate candidate set and homomorphic Paillier cryptosystem to compute global supports. Experimental results show that the performance of EMHS is better than MHS in specific databases when increasing the number of sites. A second scheme is also proposed for the other databases.","PeriodicalId":115212,"journal":{"name":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rivf.2012.6169821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we propose an Enhanced M.Hussein et al.'s Scheme (EMHS) for privacy-preserving association rules mining on horizontally distributed databases. EMHS is based on the M.Hussein et al.'s Scheme (MHS) proposed in 2008 and improves privacy and performance when increasing the number of sites. EMHS uses two servers, Initiator and Combiner, combined with MFI approach to generate candidate set and homomorphic Paillier cryptosystem to compute global supports. Experimental results show that the performance of EMHS is better than MHS in specific databases when increasing the number of sites. A second scheme is also proposed for the other databases.
一种增强的水平分布式数据库隐私保护关联规则挖掘方案
本文提出了一种改进的M.Hussein et al. s Scheme (EMHS),用于水平分布数据库的隐私保护关联规则挖掘。EMHS以2008年提出的m.h hussein等人的方案(MHS)为基础,并在增加网站数量时改善隐私和性能。EMHS采用Initiator和Combiner两个服务器,结合MFI方法生成候选集,并采用同态Paillier密码系统计算全局支持度。实验结果表明,随着站点数量的增加,EMHS在特定数据库中的性能优于MHS。对其他数据库也提出了第二种方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信