M. Khoshkholgh, A. Haghighi, K. Navaie, K. Shin, Victor C. M. Leung
{"title":"Exploiting Quantization Uncertainty for Enhancing Capacity of Limited-Feedback MISO Ad Hoc Networks","authors":"M. Khoshkholgh, A. Haghighi, K. Navaie, K. Shin, Victor C. M. Leung","doi":"10.1109/GLOCOM.2016.7841830","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the capacity of random wireless networks in which transmitters are equipped with multiantennas. A quantized version of channel direction information (CDI) is also available, provided by the associated single antenna receivers. We adopt tools of stochastic geometry and random vector quantization to incorporate the impacts of interference and quantization errors, respectively. We first study the capacity of Aloha, and channel quality information (CQI)-based scheduling, whereby the transmissions decision in each transceiver pair depends on the strength of the CQI against a prescribed threshold. We then propose a new scheduling scheme, namely modified CQI (MCQI), by which the quantization error is effectively incorporated in the scheduling. Further we obtain the capacity of MCQI-based scheduling. Simulation results confirm our analysis and show that the proposed MCQI-based scheduling improves the capacity compared to the CQI-based scheduling and Aloha. It is also seen that the performance boost is more significant where the feedback capacity is low and the network is dense. In comparison with the case of high feedback capacity, the network capacity is not reduced by low feedback capacity in the MCQI-based scheduling. This is of practical importance since the network designer can save the feedback resources by employing MCQI-based scheduling without compromising the capacity and increasing the receivers' complexity.","PeriodicalId":425019,"journal":{"name":"2016 IEEE Global Communications Conference (GLOBECOM)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2016.7841830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we investigate the capacity of random wireless networks in which transmitters are equipped with multiantennas. A quantized version of channel direction information (CDI) is also available, provided by the associated single antenna receivers. We adopt tools of stochastic geometry and random vector quantization to incorporate the impacts of interference and quantization errors, respectively. We first study the capacity of Aloha, and channel quality information (CQI)-based scheduling, whereby the transmissions decision in each transceiver pair depends on the strength of the CQI against a prescribed threshold. We then propose a new scheduling scheme, namely modified CQI (MCQI), by which the quantization error is effectively incorporated in the scheduling. Further we obtain the capacity of MCQI-based scheduling. Simulation results confirm our analysis and show that the proposed MCQI-based scheduling improves the capacity compared to the CQI-based scheduling and Aloha. It is also seen that the performance boost is more significant where the feedback capacity is low and the network is dense. In comparison with the case of high feedback capacity, the network capacity is not reduced by low feedback capacity in the MCQI-based scheduling. This is of practical importance since the network designer can save the feedback resources by employing MCQI-based scheduling without compromising the capacity and increasing the receivers' complexity.