Improving the performance of k-means clustering through computation skipping and data locality optimizations

Orhan Kislal, P. Berman, M. Kandemir
{"title":"Improving the performance of k-means clustering through computation skipping and data locality optimizations","authors":"Orhan Kislal, P. Berman, M. Kandemir","doi":"10.1145/2212908.2212951","DOIUrl":null,"url":null,"abstract":"We present three different optimization techniques for k-means clustering algorithm to improve the running time without decreasing the accuracy of the cluster centers significantly. Our first optimization restructures loops to improve cache behavior when executing on multicore architectures. The remaining two optimizations skip select points to reduce execution latency. Our sensitivity analysis suggests that the performance can be enhanced through a good understanding of the data and careful configuration of the parameters.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present three different optimization techniques for k-means clustering algorithm to improve the running time without decreasing the accuracy of the cluster centers significantly. Our first optimization restructures loops to improve cache behavior when executing on multicore architectures. The remaining two optimizations skip select points to reduce execution latency. Our sensitivity analysis suggests that the performance can be enhanced through a good understanding of the data and careful configuration of the parameters.
通过计算跳过和数据局部性优化来提高k-means聚类的性能
为了在不显著降低聚类中心精度的前提下提高k-means聚类算法的运行时间,我们提出了三种不同的优化技术。我们的第一个优化重组了循环,以改善在多核架构上执行时的缓存行为。其余两个优化跳过选择点以减少执行延迟。我们的敏感性分析表明,通过对数据的良好理解和对参数的仔细配置,可以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信