{"title":"Exploiting memory and soft-decision information in channel optimized quantization for correlated fading channels","authors":"Shervin Shahidi, F. Alajaji, T. Linder","doi":"10.1109/CWIT.2011.5872125","DOIUrl":null,"url":null,"abstract":"A channel optimized vector quantizer (COVQ) scheme is studied and evaluated for a recently introduced discrete binary-input 2q-ary-output channel with Markovian ergodic noise based on a finite queue. This channel can effectively model binary-modulated correlated Rayleigh fading channels with output quantization of resolution q. It is shown that the system can successfully exploit the channel's memory and soft-decision information. Signal-to-distortion gains of up to 2.3 dB are obtained for only 2 bits of soft-decision quantization over COVQ schemes designed for a hard-decision (q = 1) demodulated channel. Furthermore, gains as high as 4.6 dB can be achieved for a highly correlated channel, in comparison with systems designed for the ideally interleaved (memoryless) channel. Finally, the queue-based noise model is validated as an effective approximation of correlated fading channels by testing a COVQ trained using this model over the Rayleigh fading channel.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A channel optimized vector quantizer (COVQ) scheme is studied and evaluated for a recently introduced discrete binary-input 2q-ary-output channel with Markovian ergodic noise based on a finite queue. This channel can effectively model binary-modulated correlated Rayleigh fading channels with output quantization of resolution q. It is shown that the system can successfully exploit the channel's memory and soft-decision information. Signal-to-distortion gains of up to 2.3 dB are obtained for only 2 bits of soft-decision quantization over COVQ schemes designed for a hard-decision (q = 1) demodulated channel. Furthermore, gains as high as 4.6 dB can be achieved for a highly correlated channel, in comparison with systems designed for the ideally interleaved (memoryless) channel. Finally, the queue-based noise model is validated as an effective approximation of correlated fading channels by testing a COVQ trained using this model over the Rayleigh fading channel.