Fast spintronic thermal sensor for IC power driver cooling down

Yanfeng Jiang, Yisong Zhang, A. Klemm, Jianping Wang
{"title":"Fast spintronic thermal sensor for IC power driver cooling down","authors":"Yanfeng Jiang, Yisong Zhang, A. Klemm, Jianping Wang","doi":"10.1109/IEDM.2016.7838483","DOIUrl":null,"url":null,"abstract":"A novel thermal sensor is designed and fabricated based on spin-transfer torque operated magnetic tunnel junction (STT-MTJ) device. It can fulfill thermal detection and overheat protection on integrated circuit. Moreover, it shows over 10 times faster thermal transit response speed than that of traditional CMOS thermal sensor. The unique property is really helpful for controlling integrated circuit's temperature due to heating by leakage current. A power driver at full loading situation is used to demonstrate this design. It shows that the sensor can be adopted as adaptive manner in a power source scaling strategy to cool down the IC in an effective way, showing a promising potential application not only as discrete sensor, but also as power solution for IC driver.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel thermal sensor is designed and fabricated based on spin-transfer torque operated magnetic tunnel junction (STT-MTJ) device. It can fulfill thermal detection and overheat protection on integrated circuit. Moreover, it shows over 10 times faster thermal transit response speed than that of traditional CMOS thermal sensor. The unique property is really helpful for controlling integrated circuit's temperature due to heating by leakage current. A power driver at full loading situation is used to demonstrate this design. It shows that the sensor can be adopted as adaptive manner in a power source scaling strategy to cool down the IC in an effective way, showing a promising potential application not only as discrete sensor, but also as power solution for IC driver.
用于IC电源驱动冷却的快速自旋电子热传感器
设计并制作了一种基于自旋传递转矩磁隧道结(STT-MTJ)器件的新型热传感器。在集成电路上实现热检测和过热保护。与传统CMOS热传感器相比,其热传递响应速度提高了10倍以上。这种独特的性能对控制集成电路因漏电流加热而产生的温度非常有帮助。以全负荷情况下的电源驱动器为例,说明了该设计。结果表明,该传感器可作为自适应方式应用于电源缩放策略中,有效地对集成电路进行冷却,不仅可以作为离散传感器,而且可以作为集成电路驱动器的电源解决方案,具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信