{"title":"Segmentation of Pectoral Muscle Region in MLO Mammography Images by Backboned U-Net","authors":"R. Ö. Dogan, H. Ture, T. Kayikçioglu","doi":"10.1109/SIU55565.2022.9864865","DOIUrl":null,"url":null,"abstract":"The pectoral muscle region on MLO mammography images appears prominently similar to suspicious areas. For this reason, Computer-Aided Detection (CAD) systems remove this region to reduce false-positive rates in the mass detection process. In some cases, the pectoral muscle region is exposed to distortions due to the superposition effects caused by the mammography technique. As a result, segmentation error rates of the pectoral muscle region, whose characteristic features are deteriorated, appear. In this study, a method to identify impaired pectoral muscle regions with MobileNetV2 backboned U-Net Deep Learning method is proposed. The proposed method was tested on 84 and 201 mammography images taken from both MIAS and InBreast databases and segmented with 1.81% and 1.92% false-negative (FN) and 0.25% and 0.37% false positive (FP) rates, respectively. Particularly for distorted pectoral muscle regions, the proposed method has been shown to outperform some pioneering studies in this area.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The pectoral muscle region on MLO mammography images appears prominently similar to suspicious areas. For this reason, Computer-Aided Detection (CAD) systems remove this region to reduce false-positive rates in the mass detection process. In some cases, the pectoral muscle region is exposed to distortions due to the superposition effects caused by the mammography technique. As a result, segmentation error rates of the pectoral muscle region, whose characteristic features are deteriorated, appear. In this study, a method to identify impaired pectoral muscle regions with MobileNetV2 backboned U-Net Deep Learning method is proposed. The proposed method was tested on 84 and 201 mammography images taken from both MIAS and InBreast databases and segmented with 1.81% and 1.92% false-negative (FN) and 0.25% and 0.37% false positive (FP) rates, respectively. Particularly for distorted pectoral muscle regions, the proposed method has been shown to outperform some pioneering studies in this area.