Instance-Based Ensemble Pruning via Multi-Label Classification

Fotini Markatopoulou, Grigorios Tsoumakas, I. Vlahavas
{"title":"Instance-Based Ensemble Pruning via Multi-Label Classification","authors":"Fotini Markatopoulou, Grigorios Tsoumakas, I. Vlahavas","doi":"10.1109/ICTAI.2010.64","DOIUrl":null,"url":null,"abstract":"Ensemble pruning is concerned with the reduction of the size of an ensemble prior to its combination. Its purpose is to reduce the space and time complexity of the ensemble and/or to increase the ensemble's accuracy. This paper focuses on instance-based approaches to ensemble pruning, where a different subset of the ensemble may be used for each different unclassified instance. We propose modeling this task as a multi-label learning problem, in order to take advantage of the recent advances in this area for the construction of effective ensemble pruning approaches. Results comparing the proposed framework against a variety of other instance-based ensemble pruning approaches in a variety of datasets using a heterogeneous ensemble of 200 classifiers, show that it leads to improved accuracy.","PeriodicalId":141778,"journal":{"name":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Ensemble pruning is concerned with the reduction of the size of an ensemble prior to its combination. Its purpose is to reduce the space and time complexity of the ensemble and/or to increase the ensemble's accuracy. This paper focuses on instance-based approaches to ensemble pruning, where a different subset of the ensemble may be used for each different unclassified instance. We propose modeling this task as a multi-label learning problem, in order to take advantage of the recent advances in this area for the construction of effective ensemble pruning approaches. Results comparing the proposed framework against a variety of other instance-based ensemble pruning approaches in a variety of datasets using a heterogeneous ensemble of 200 classifiers, show that it leads to improved accuracy.
基于实例的多标签分类集成剪枝
集合修剪是指在集合组合之前减小集合的大小。其目的是降低集成的空间和时间复杂性和/或提高集成的准确性。本文的重点是基于实例的集成修剪方法,其中集成的不同子集可以用于每个不同的未分类实例。我们建议将该任务建模为一个多标签学习问题,以便利用该领域的最新进展来构建有效的集成修剪方法。在使用200个分类器的异构集成的各种数据集上,将所提出的框架与各种其他基于实例的集成修剪方法进行比较,结果表明它可以提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信