A general strong Nyman-Beurling criterion for the Riemann hypothesis

L. Báez-Duarte
{"title":"A general strong Nyman-Beurling criterion for the Riemann hypothesis","authors":"L. Báez-Duarte","doi":"10.2298/PIM0578117B","DOIUrl":null,"url":null,"abstract":"For each [FORMULA] formally consider its Miintz transform [FORMULA]. For certain ƒ's with both [FORMULA] it is true that the Riemann hypothesis holds if and only if ƒ is in the L2 closure of the vector space generated by the dilations [FORMULA]. Such is the case for example when ƒ = X(0,1) where the above statement reduces to the strong Nyman criterion already established by the author. In this note we show that the necessity implication holds for any continuously differentiable function ƒ vanishing at infinity and satisfying [FORMULA]. If in addition ƒ is of compact support, then the sufficiency implication also holds true. It would be convenient to remove this compactness condition .","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0578117B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

For each [FORMULA] formally consider its Miintz transform [FORMULA]. For certain ƒ's with both [FORMULA] it is true that the Riemann hypothesis holds if and only if ƒ is in the L2 closure of the vector space generated by the dilations [FORMULA]. Such is the case for example when ƒ = X(0,1) where the above statement reduces to the strong Nyman criterion already established by the author. In this note we show that the necessity implication holds for any continuously differentiable function ƒ vanishing at infinity and satisfying [FORMULA]. If in addition ƒ is of compact support, then the sufficiency implication also holds true. It would be convenient to remove this compactness condition .
黎曼假设的一般强尼曼-伯林判据
对于每个[FORMULA],考虑它的mintz变换[FORMULA]。对于具有两个[公式]的特定的[f],当且仅当[f]在由膨胀[公式]产生的向量空间的L2闭包中,黎曼假设成立。例如,当f = X(0,1)时,上述陈述可以简化为作者已经建立的强尼曼标准。在这篇笔记中,我们证明了对于任何在无穷远处消失并满足[公式]的连续可微函数,必然性蕴涵都成立。如果另外的f有紧支持,则充分性蕴涵也成立。消除这种致密性条件将是方便的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信