Parallelized Architecture of Multiple Classifiers for Face Detection

Junguk Cho, Bridget Benson, Shahnam Mirzaei, R. Kastner
{"title":"Parallelized Architecture of Multiple Classifiers for Face Detection","authors":"Junguk Cho, Bridget Benson, Shahnam Mirzaei, R. Kastner","doi":"10.1109/ASAP.2009.38","DOIUrl":null,"url":null,"abstract":"This paper presents a parallelized architecture of multiple classifiers for face detection based on the Viola and Jones object detection method. This method makes use of the AdaBoost algorithm which identifies a sequence of Haar classifiers that indicate the presence of a face. We describe the hardware design techniques including image scaling, integral image generation, pipelined processing of classifiers, and parallel processing of multiple classifiers to accelerate the processing speed of the face detection system. Also we discuss the parallelized architecture which can be scalable for configurable device with variable resources. We implement the proposed architecture in Verilog HDL on a Xilinx Virtex-5 FPGA and show the parallelized architecture of multiple classifiers can have 3.3× performance gain over the architecture of a single classifier and an 84× performance gain over an equivalent software solution.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

This paper presents a parallelized architecture of multiple classifiers for face detection based on the Viola and Jones object detection method. This method makes use of the AdaBoost algorithm which identifies a sequence of Haar classifiers that indicate the presence of a face. We describe the hardware design techniques including image scaling, integral image generation, pipelined processing of classifiers, and parallel processing of multiple classifiers to accelerate the processing speed of the face detection system. Also we discuss the parallelized architecture which can be scalable for configurable device with variable resources. We implement the proposed architecture in Verilog HDL on a Xilinx Virtex-5 FPGA and show the parallelized architecture of multiple classifiers can have 3.3× performance gain over the architecture of a single classifier and an 84× performance gain over an equivalent software solution.
多分类器在人脸检测中的并行化结构
在Viola和Jones目标检测方法的基础上,提出了一种多分类器并行化的人脸检测体系结构。该方法利用AdaBoost算法,该算法识别一系列Haar分类器,表明人脸的存在。为了提高人脸检测系统的处理速度,我们采用了图像缩放、图像集成生成、分类器流水线处理和多分类器并行处理等硬件设计技术。同时,我们还讨论了可扩展的并行架构,该架构可用于具有可变资源的可配置设备。我们在Xilinx Virtex-5 FPGA上用Verilog HDL实现了所提出的架构,并表明多个分类器的并行化架构比单个分类器的架构具有3.3倍的性能增益,比等效软件解决方案具有84倍的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信