CUDA: Scalable parallel programming for high-performance scientific computing

D. Luebke
{"title":"CUDA: Scalable parallel programming for high-performance scientific computing","authors":"D. Luebke","doi":"10.1109/ISBI.2008.4541126","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are \"manycore\" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

Abstract

Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are "manycore" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.
CUDA:用于高性能科学计算的可扩展并行编程
最初为计算机显卡设计的图形处理单元(gpu)已经成为高性能工作站中最强大的芯片。与多核CPU架构不同的是,目前的多核CPU架构只有两个或四个核心,而GPU架构是“多核”的,拥有数百个核心,能够并行运行数千个线程。NVIDIA的CUDA是一种共同发展的硬件软件架构,使高性能计算开发人员能够在熟悉的编程环境(C编程语言)中利用GPU的巨大计算能力和内存带宽。我们描述了CUDA编程模型,并激励其在生物医学成像社区的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信