Digital chest tomosynthesis: The main steps to a computer assisted lung diagnostic system

D. Hadhazi, R. Varga, Á. Horváth, Benjamin Czétényi, G. Horváth, Á. Horváth
{"title":"Digital chest tomosynthesis: The main steps to a computer assisted lung diagnostic system","authors":"D. Hadhazi, R. Varga, Á. Horváth, Benjamin Czétényi, G. Horváth, Á. Horváth","doi":"10.1109/MeMeA.2015.7145169","DOIUrl":null,"url":null,"abstract":"In this paper, we present the main parts of a complete lung diagnostic system using digital tomosynthesis, and the first results obtained analyzing real tomosynthesis (DTS) images. In a DTS system first coronal image slices are reconstructed from projections using iterative and MITS reconstruction algorithms. Nodule detection is based on 2D image processing on the separated slice images, and a joint further analysis of the 2D results. We propose efficient, domain-specific filters for the enhancement and classification of bright, rounded structures. Also we develop a vessel enhancing algorithm based on strain energy filters. Vessel enhancement is required because most of the false positive findings come from nodule-like vessel shadows in the images. To reduce false positive findings SVM-based classifiers are applied, where features obtained from the vessel enhancement module are used as inputs. The system was evaluated on the first DTS scans, obtained from our experimental DTS system. The database contains ~2000 nodule candidates. 97% of nodules could be detected, while producing on average 31 false positives per scan.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present the main parts of a complete lung diagnostic system using digital tomosynthesis, and the first results obtained analyzing real tomosynthesis (DTS) images. In a DTS system first coronal image slices are reconstructed from projections using iterative and MITS reconstruction algorithms. Nodule detection is based on 2D image processing on the separated slice images, and a joint further analysis of the 2D results. We propose efficient, domain-specific filters for the enhancement and classification of bright, rounded structures. Also we develop a vessel enhancing algorithm based on strain energy filters. Vessel enhancement is required because most of the false positive findings come from nodule-like vessel shadows in the images. To reduce false positive findings SVM-based classifiers are applied, where features obtained from the vessel enhancement module are used as inputs. The system was evaluated on the first DTS scans, obtained from our experimental DTS system. The database contains ~2000 nodule candidates. 97% of nodules could be detected, while producing on average 31 false positives per scan.
数字胸部断层合成:计算机辅助肺部诊断系统的主要步骤
在本文中,我们介绍了一个完整的肺诊断系统的主要部分,并通过分析真实的断层合成(DTS)图像获得了第一个结果。在DTS系统中,首先使用迭代和MITS重建算法从投影重建冠状图像切片。结节检测是基于二维图像对分离的切片图像进行处理,并对二维结果进行联合进一步分析。我们提出了有效的,特定于领域的滤波器,用于增强和分类明亮的圆形结构。同时提出了一种基于应变能滤波的血管增强算法。血管增强是必要的,因为大多数假阳性结果来自图像中的结节样血管阴影。为了减少假阳性结果,应用基于svm的分类器,其中从血管增强模块获得的特征用作输入。该系统在我们的实验DTS系统获得的第一次DTS扫描上进行了评估。该数据库包含约2000个候选结节。97%的结节可以被检测到,而每次扫描平均产生31个假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信