Study of speaker recognition system based on Feed Forward deep neural networks exploring text-dependent mode

Ben Jdira Makrem, Jemâa Imen, Ouni Kaïs
{"title":"Study of speaker recognition system based on Feed Forward deep neural networks exploring text-dependent mode","authors":"Ben Jdira Makrem, Jemâa Imen, Ouni Kaïs","doi":"10.1109/SETIT.2016.7939893","DOIUrl":null,"url":null,"abstract":"We aim by this work to follow the significant progress in speaker recognition systems getting the benefits of the advancement in the artificial intelligence (AI). Indeed, the deep learning algorithms have proved a real performance in the recognition and classification data. In this contest, we present a study of three different speaker recognition system based in Feed Forward neural networks. The first one is the logic regression, the second one is the Multilayer Perceptron (MLP) and the third one is the Stacked Denoising Autoencodeurs (SDA). We evaluated these recognition rates using the parameterization technique Mel Frequency Cepstral Coefficients (MFCC). To find the best results and to better optimize automatic recognition algorithms, we tested our speaker recognition system under the text-dependent database RSR2015. We studied the recognition rates by varying the values of neural networks parameters, number of neurons and number of hidden layers…etc. We discussed the different results obtained and we selected best parameter values which lead the minimum rate error of recognition.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We aim by this work to follow the significant progress in speaker recognition systems getting the benefits of the advancement in the artificial intelligence (AI). Indeed, the deep learning algorithms have proved a real performance in the recognition and classification data. In this contest, we present a study of three different speaker recognition system based in Feed Forward neural networks. The first one is the logic regression, the second one is the Multilayer Perceptron (MLP) and the third one is the Stacked Denoising Autoencodeurs (SDA). We evaluated these recognition rates using the parameterization technique Mel Frequency Cepstral Coefficients (MFCC). To find the best results and to better optimize automatic recognition algorithms, we tested our speaker recognition system under the text-dependent database RSR2015. We studied the recognition rates by varying the values of neural networks parameters, number of neurons and number of hidden layers…etc. We discussed the different results obtained and we selected best parameter values which lead the minimum rate error of recognition.
基于前馈深度神经网络文本依赖模式的说话人识别系统研究
我们的目标是通过这项工作跟踪说话人识别系统的重大进展,从人工智能(AI)的进步中获益。事实上,深度学习算法已经在识别和分类数据中证明了真正的性能。在本次比赛中,我们提出了三种不同的基于前馈神经网络的说话人识别系统的研究。第一个是逻辑回归,第二个是多层感知器(MLP),第三个是堆叠去噪自编码器(SDA)。我们使用参数化技术Mel频率倒谱系数(MFCC)来评估这些识别率。为了找到最好的结果并更好地优化自动识别算法,我们在文本依赖数据库RSR2015下测试了我们的说话人识别系统。我们通过改变神经网络参数的值、神经元的数目和隐藏层的数目等来研究识别率。讨论了得到的不同结果,选择了使识别错误率最小的最佳参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信