Analog In-memory Computing in FeFET-based 1T1R Array for Edge AI Applications

D. Saito, T. Kobayashi, H. Koga, N. Ronchi, K. Banerjee, Y. Shuto, J. Okuno, Kenta Konishi, L. Piazza, A. Mallik, J. V. Houdt, M. Tsukamoto, K. Ohkuri, T. Umebayashi, T. Ezaki
{"title":"Analog In-memory Computing in FeFET-based 1T1R Array for Edge AI Applications","authors":"D. Saito, T. Kobayashi, H. Koga, N. Ronchi, K. Banerjee, Y. Shuto, J. Okuno, Kenta Konishi, L. Piazza, A. Mallik, J. V. Houdt, M. Tsukamoto, K. Ohkuri, T. Umebayashi, T. Ezaki","doi":"10.23919/VLSICircuits52068.2021.9492479","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) inference for edge AI requires low-power operation, which can be achieved by implementing massively parallel matrix-vector multiplications (MVM) in the analog domain on a highly resistive memory array. We propose a 1T1R compute cell (1T1R-cell) using a ferroelectric hafnium oxide-based FET (FeFET) and TiN/SiO2 tunneling junction of MΩ resistor (MOR) for analog in-memory computing (AiMC). The MOR exhibited a tunneling current behavior and MΩ resistance. A 1T1R-cell array-level evaluation was also performed. A random access for writing with low write disturbance scheme was confirmed from the summation-DC-current output, and binaries were successfully classified into “T” and “L.” Based on the experimental results of our proposed 1T1R-cell, we obtained a state-of-the-art energy efficiency of 13700 TOPS/W including the periphery. Furthermore, we confirmed that a high inference accuracy can be obtained with our low-resistance-variability 1T1R-cell with a properly trained model.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Deep neural network (DNN) inference for edge AI requires low-power operation, which can be achieved by implementing massively parallel matrix-vector multiplications (MVM) in the analog domain on a highly resistive memory array. We propose a 1T1R compute cell (1T1R-cell) using a ferroelectric hafnium oxide-based FET (FeFET) and TiN/SiO2 tunneling junction of MΩ resistor (MOR) for analog in-memory computing (AiMC). The MOR exhibited a tunneling current behavior and MΩ resistance. A 1T1R-cell array-level evaluation was also performed. A random access for writing with low write disturbance scheme was confirmed from the summation-DC-current output, and binaries were successfully classified into “T” and “L.” Based on the experimental results of our proposed 1T1R-cell, we obtained a state-of-the-art energy efficiency of 13700 TOPS/W including the periphery. Furthermore, we confirmed that a high inference accuracy can be obtained with our low-resistance-variability 1T1R-cell with a properly trained model.
边缘人工智能应用中基于fet的1T1R阵列模拟内存计算
边缘人工智能的深度神经网络(DNN)推理需要低功耗运行,这可以通过在高阻存储器阵列上的模拟域中实现大规模并行矩阵向量乘法(MVM)来实现。我们提出了一种1T1R计算单元(1T1R-cell),使用铁电氧化铪基场效应管(FeFET)和MΩ电阻器(MOR)的TiN/SiO2隧道结,用于模拟内存计算(AiMC)。MOR表现出隧道电流行为和MΩ电阻。还进行了1t1r细胞阵列水平的评估。从和直流电流输出中确定了一种低写入干扰的随机写入方案,并成功地将二进制数据分类为“T”和“l”。基于我们提出的1t1r电池的实验结果,我们获得了最先进的能量效率为13700 TOPS/W,包括外围。此外,我们证实,通过适当训练的模型,我们的低电阻变异性1t1r单元可以获得很高的推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信