Assisted navigation for large information spaces

Brent M. Dennis, Christopher G. Healey
{"title":"Assisted navigation for large information spaces","authors":"Brent M. Dennis, Christopher G. Healey","doi":"10.1109/VISUAL.2002.1183803","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for visualizing large, complex collections of data. The size and dimensionality of these datasets make them challenging to display in an effective manner. The images must show the global structure of spatial relationships within the dataset, yet at the same time accurately represent the local detail of each data element being visualized. We propose combining ideas from information and scientific visualization together with a navigation assistant, a software system designed to help users identify and explore areas of interest within their data. The assistant locates data elements of potential importance to the user, clusters them into spatial regions, and builds underlying graph structures to connect the regions and the elements they contain. Graph traversal algorithms, constraint-based viewpoint construction, and intelligent camera planning techniques can then be used to design animated tours of these regions. In this way, the navigation assistant can help users to explore any of the areas of interest within their data. We conclude by demonstrating how our assistant is being used to visualize a multidimensional weather dataset.","PeriodicalId":196064,"journal":{"name":"IEEE Visualization, 2002. VIS 2002.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2002. VIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2002.1183803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper presents a new technique for visualizing large, complex collections of data. The size and dimensionality of these datasets make them challenging to display in an effective manner. The images must show the global structure of spatial relationships within the dataset, yet at the same time accurately represent the local detail of each data element being visualized. We propose combining ideas from information and scientific visualization together with a navigation assistant, a software system designed to help users identify and explore areas of interest within their data. The assistant locates data elements of potential importance to the user, clusters them into spatial regions, and builds underlying graph structures to connect the regions and the elements they contain. Graph traversal algorithms, constraint-based viewpoint construction, and intelligent camera planning techniques can then be used to design animated tours of these regions. In this way, the navigation assistant can help users to explore any of the areas of interest within their data. We conclude by demonstrating how our assistant is being used to visualize a multidimensional weather dataset.
大型信息空间的辅助导航
本文提出了一种可视化大型复杂数据集的新技术。这些数据集的大小和维度使它们难以以有效的方式显示。图像必须显示数据集中空间关系的全局结构,同时准确地表示被可视化的每个数据元素的局部细节。我们建议将信息和科学可视化的想法与导航助手结合起来,这是一个旨在帮助用户识别和探索数据中感兴趣的领域的软件系统。该助手定位对用户具有潜在重要性的数据元素,将它们聚类到空间区域中,并构建底层图结构以连接这些区域及其包含的元素。图形遍历算法、基于约束的视点构建和智能摄像机规划技术可以用来设计这些区域的动画游览。通过这种方式,导航助手可以帮助用户在他们的数据中探索任何感兴趣的领域。最后,我们演示了如何使用我们的助手来可视化多维天气数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信