Implementation of virtual sensors in body sensor networks with the SPINE framework

Nikhil Raveendranathan, Vitali Loseu, E. Guenterberg, Roberta Giannantonio, Raffaele Gravina, M. Sgroi, R. Jafari
{"title":"Implementation of virtual sensors in body sensor networks with the SPINE framework","authors":"Nikhil Raveendranathan, Vitali Loseu, E. Guenterberg, Roberta Giannantonio, Raffaele Gravina, M. Sgroi, R. Jafari","doi":"10.1109/SIES.2009.5196204","DOIUrl":null,"url":null,"abstract":"Signal processing for Body Sensor Networks usually comprises multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors (VS) to improve architecture modularity and design reusability. In our pilot application of gait parameter extraction, VS are abstractions of components of BSN classification systems that include sensor sampling and processing tasks and provide data upon external requests analogous to the function of physical sensors. The paper presents an extension of the SPINE Framework including a new buffer management scheme that facilitates the VS implementation.","PeriodicalId":133325,"journal":{"name":"2009 IEEE International Symposium on Industrial Embedded Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Industrial Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2009.5196204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Signal processing for Body Sensor Networks usually comprises multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors (VS) to improve architecture modularity and design reusability. In our pilot application of gait parameter extraction, VS are abstractions of components of BSN classification systems that include sensor sampling and processing tasks and provide data upon external requests analogous to the function of physical sensors. The paper presents an extension of the SPINE Framework including a new buffer management scheme that facilitates the VS implementation.
利用SPINE框架实现人体传感器网络中的虚拟传感器
身体传感器网络的信号处理通常包括多个级别的数据抽象,从原始传感器数据到从特征提取和分类等处理步骤计算的数据。本文提出了一种基于虚拟传感器(VS)概念的多层任务模型,以提高体系结构的模块化和设计的可重用性。在我们的步态参数提取试点应用中,VS是BSN分类系统组件的抽象,包括传感器采样和处理任务,并根据外部请求提供数据,类似于物理传感器的功能。本文提出了SPINE框架的扩展,包括一个新的缓冲区管理方案,以促进VS的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信