Traversable wormholes with logarithmic shape function in f(R,T) gravity

A. Dixit, Chanchal Chawla, A. Pradhan
{"title":"Traversable wormholes with logarithmic shape function in f(R,T) gravity","authors":"A. Dixit, Chanchal Chawla, A. Pradhan","doi":"10.1142/S021988782150064X","DOIUrl":null,"url":null,"abstract":"In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2\\lambda T$ where $\\lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accomplishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $\\lambda$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $\\lambda=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $\\omega_{r}$, the tangential state parameter $\\omega_{t}$ and the anisotropy parameter $\\triangle$ describing the geometry of the universe, has been presented for different values of $\\lambda$ chosen in $[-100,100]$.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S021988782150064X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2\lambda T$ where $\lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accomplishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $\lambda$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $\lambda=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $\omega_{r}$, the tangential state parameter $\omega_{t}$ and the anisotropy parameter $\triangle$ describing the geometry of the universe, has been presented for different values of $\lambda$ chosen in $[-100,100]$.
在f(R,T)重力下具有对数形状函数的可穿越虫洞
本文提出了虫洞几何中线性$f(R,T)$重力($f(R,T)=R+2\lambda T$,其中$\lambda$为任意耦合常数)的对数形状函数的一种新形式。期望的对数形状函数实现了可穿越和渐近平坦虫洞的所有必要条件。从不同$\lambda$值的能量条件出发,对得到的虫洞解进行了分析。已经观察到,我们提出的$f(R,T)$重力线性形式的形状函数,代表了奇异物质和非奇异物质的存在。此外,对于$\lambda=0$,即对于广义相对论的情况,虫洞几何的奇异物质的存在已被证实。此外,还给出了在$[-100,100]$中选择不同的$\lambda$值时,描述宇宙几何形状的径向状态参数$\omega_{r}$、切向状态参数$\omega_{t}$和各向异性参数$\triangle$的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信