Computational extraction of formulaic sequences from corpora

A. Wahl, S. Gries
{"title":"Computational extraction of formulaic sequences from corpora","authors":"A. Wahl, S. Gries","doi":"10.1075/ivitra.24.05wah","DOIUrl":null,"url":null,"abstract":"We describe a new algorithm for the extraction of formulaic language from corpora. Entitled MERGE (Multi-word Expressions from the Recursive Grouping of Elements), it iteratively combines adjacent bigrams into progressively longer sequences based on lexical association strengths. We then provide empirical evidence for this approach via two case studies. First, we compare the performance of MERGE to that of another algorithm by examining the outputs of the approaches compared with manually annotated formulaic sequences from the spoken component of the British National Corpus. Second, we employ two child language corpora to examine whether MERGE can predict the formulas that the children learn based on caregiver input. Ultimately, we show that MERGE indeed performs well, offering a powerful approach for the extraction of formulas.","PeriodicalId":227612,"journal":{"name":"IVITRA Research in Linguistics and Literature","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVITRA Research in Linguistics and Literature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/ivitra.24.05wah","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We describe a new algorithm for the extraction of formulaic language from corpora. Entitled MERGE (Multi-word Expressions from the Recursive Grouping of Elements), it iteratively combines adjacent bigrams into progressively longer sequences based on lexical association strengths. We then provide empirical evidence for this approach via two case studies. First, we compare the performance of MERGE to that of another algorithm by examining the outputs of the approaches compared with manually annotated formulaic sequences from the spoken component of the British National Corpus. Second, we employ two child language corpora to examine whether MERGE can predict the formulas that the children learn based on caregiver input. Ultimately, we show that MERGE indeed performs well, offering a powerful approach for the extraction of formulas.
从语料库中计算提取公式化序列
提出了一种从语料库中提取公式化语言的新算法。该方法名为MERGE(来自元素递归分组的多词表达式),它根据词法关联强度将相邻的双元迭代地组合成逐渐变长的序列。然后,我们通过两个案例研究为这种方法提供了经验证据。首先,我们将MERGE的性能与另一种算法的性能进行比较,方法是将这些方法的输出与英国国家语料库中语音成分的手动注释的公式化序列进行比较。其次,我们使用两个儿童语言语料库来检验MERGE是否可以预测儿童根据照顾者输入学习的公式。最后,我们证明MERGE确实执行得很好,为提取公式提供了一种强大的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信