Hyperspectral image analysis using deep learning — A review

H. Petersson, David Gustafsson, D. Bergström
{"title":"Hyperspectral image analysis using deep learning — A review","authors":"H. Petersson, David Gustafsson, D. Bergström","doi":"10.1109/IPTA.2016.7820963","DOIUrl":null,"url":null,"abstract":"Deep learning is a rather new approach to machine learning that has achieved remarkable results in a large number of different image processing applications. Lately, application of deep learning to detect and classify spectral and spatio-spectral signatures in hyperspectral images has emerged. The high dimensionality of hyperspectral images and the limited amount of labelled training data makes deep learning an appealing approach for analysing hyperspectral data. Auto-Encoder can be used to learn a hierarchical feature representation using solely unlabelled data, the learnt representation can be combined with a logistic regression classifier to achieve results in-line with existing state-of-the-art methods. In this paper, we compare results between a set of available publications and find that deep learning perform in line with state-of-the-art on many data sets but little evidence exists that deep learning outperform the reference methods.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

Deep learning is a rather new approach to machine learning that has achieved remarkable results in a large number of different image processing applications. Lately, application of deep learning to detect and classify spectral and spatio-spectral signatures in hyperspectral images has emerged. The high dimensionality of hyperspectral images and the limited amount of labelled training data makes deep learning an appealing approach for analysing hyperspectral data. Auto-Encoder can be used to learn a hierarchical feature representation using solely unlabelled data, the learnt representation can be combined with a logistic regression classifier to achieve results in-line with existing state-of-the-art methods. In this paper, we compare results between a set of available publications and find that deep learning perform in line with state-of-the-art on many data sets but little evidence exists that deep learning outperform the reference methods.
使用深度学习的高光谱图像分析-综述
深度学习是一种相当新的机器学习方法,在大量不同的图像处理应用中取得了显着的成果。近年来,深度学习应用于高光谱图像的光谱和空间光谱特征的检测和分类已经出现。高光谱图像的高维性和有限数量的标记训练数据使深度学习成为分析高光谱数据的一种有吸引力的方法。Auto-Encoder可以使用单独的未标记数据来学习分层特征表示,学习到的表示可以与逻辑回归分类器相结合,以获得与现有最先进方法一致的结果。在本文中,我们比较了一组可用出版物之间的结果,发现深度学习在许多数据集上的表现与最新技术一致,但几乎没有证据表明深度学习优于参考方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信