Mortgages: Estimating Default Correlation and Forecasting Default Risk

{"title":"Mortgages: Estimating Default Correlation and Forecasting Default Risk","authors":"","doi":"10.2139/ssrn.3135271","DOIUrl":null,"url":null,"abstract":"Default correlation is a key driver of credit risk. In the Basel regulatory framework it is measured by the asset value correlation parameter. Though past studies suggest that the parameter is over-calibrated for mortgages — generally the largest asset class on banks’ balance sheets — they do not take into account bias arising from small samples or non-Gaussian risk factors. Adjusting for these biases using a non-Gaussian, non-linear state space model I find that the Basel calibration is appropriate for UK and US mortgages. This model also forecasts mortgage default rates accurately and parsimoniously. The model generates value-at-risk estimates for future mortgage default rates, which can be used to inform stress-testing and macroprudential policy.","PeriodicalId":344099,"journal":{"name":"ERN: Banking & Monetary Policy (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Banking & Monetary Policy (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3135271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Default correlation is a key driver of credit risk. In the Basel regulatory framework it is measured by the asset value correlation parameter. Though past studies suggest that the parameter is over-calibrated for mortgages — generally the largest asset class on banks’ balance sheets — they do not take into account bias arising from small samples or non-Gaussian risk factors. Adjusting for these biases using a non-Gaussian, non-linear state space model I find that the Basel calibration is appropriate for UK and US mortgages. This model also forecasts mortgage default rates accurately and parsimoniously. The model generates value-at-risk estimates for future mortgage default rates, which can be used to inform stress-testing and macroprudential policy.
抵押贷款:估计违约相关性和预测违约风险
违约相关性是信用风险的一个关键驱动因素。在巴塞尔监管框架中,它是通过资产价值相关参数来衡量的。尽管过去的研究表明,抵押贷款(通常是银行资产负债表上最大的资产类别)的参数校准过度,但它们没有考虑到小样本或非高斯风险因素造成的偏差。使用非高斯非线性状态空间模型来调整这些偏差,我发现巴塞尔标准适用于英国和美国的抵押贷款。该模型还能准确而简洁地预测抵押贷款违约率。该模型生成未来抵押贷款违约率的风险价值估计,可用于为压力测试和宏观审慎政策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信