{"title":"Graph-Based Segmentation for Diabetic Macular Edema Selection in OCT Images","authors":"N. Ilyasova, A. Shirokanev, N. Demin, R. Paringer","doi":"10.1109/icfsp48124.2019.8938047","DOIUrl":null,"url":null,"abstract":"Diabetic macular edema results in severe complications leading to blindness and is characterized by specific areas in the optical coherent tomography images (OCT). We propose a technique for diabetic macular edema selection, which is based on the pre-processing of OCT images using the edge detection method and graph-based image segmentation. In the course of study, the value of $\\sigma=3.5$ was demonstrated to be an optimal value of the $\\sigma$ parameter of a filter kernel utilized at a preprocessing stage. The image binarization threshold in the Canny algorithm was chosen based on a criterion of reduction of spurious edges in the resulting image. The best result was attained at a threshold of 0.6. It has been experimentally demonstrated that when the percentage of minimum cluster size equals 2.5% it is possible to attain a retinal segmentation error of 2%.","PeriodicalId":162584,"journal":{"name":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icfsp48124.2019.8938047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic macular edema results in severe complications leading to blindness and is characterized by specific areas in the optical coherent tomography images (OCT). We propose a technique for diabetic macular edema selection, which is based on the pre-processing of OCT images using the edge detection method and graph-based image segmentation. In the course of study, the value of $\sigma=3.5$ was demonstrated to be an optimal value of the $\sigma$ parameter of a filter kernel utilized at a preprocessing stage. The image binarization threshold in the Canny algorithm was chosen based on a criterion of reduction of spurious edges in the resulting image. The best result was attained at a threshold of 0.6. It has been experimentally demonstrated that when the percentage of minimum cluster size equals 2.5% it is possible to attain a retinal segmentation error of 2%.