{"title":"Optimisation for Sport Stadium Designs","authors":"Daniel Joseph, A. B. Kim, M. Haeusler","doi":"10.52842/conf.caadria.2015.573","DOIUrl":null,"url":null,"abstract":"Applying computational optimisation tools for sport stadium designs has become common practice. However, optimizations often occur only on a macro level (analysing stadium as a whole) and not on a micro level (a view from each seat). Consequently, items on a micro level with design details like guardrails can be overlooked, leading to financial losses for operators. Hence, the research argues that every seat is encouraged to have a clear field of view to avoid financial complications. In order to address this problem the research team developed and evaluated a script that allowed importing an existing design into Rhino. Firstly, the script evaluates the view of each seat via a colour coded response system. Secondly, the designer can select the respective seat, and view the sightline from the occupant’s sightline to various spots on the field to analyse where the obstruction is occurring. This ‘binocular view’ enables the designer to evaluate blind spots from each seat prior to project completion. As the script allows the designer to automate the micro level analysis, the research arguably provides a significant improvement for stadium design by comparing the time used for a design optimisation in a conventional method with the automated one.","PeriodicalId":191179,"journal":{"name":"Proceedings of the 20th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52842/conf.caadria.2015.573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Applying computational optimisation tools for sport stadium designs has become common practice. However, optimizations often occur only on a macro level (analysing stadium as a whole) and not on a micro level (a view from each seat). Consequently, items on a micro level with design details like guardrails can be overlooked, leading to financial losses for operators. Hence, the research argues that every seat is encouraged to have a clear field of view to avoid financial complications. In order to address this problem the research team developed and evaluated a script that allowed importing an existing design into Rhino. Firstly, the script evaluates the view of each seat via a colour coded response system. Secondly, the designer can select the respective seat, and view the sightline from the occupant’s sightline to various spots on the field to analyse where the obstruction is occurring. This ‘binocular view’ enables the designer to evaluate blind spots from each seat prior to project completion. As the script allows the designer to automate the micro level analysis, the research arguably provides a significant improvement for stadium design by comparing the time used for a design optimisation in a conventional method with the automated one.