User interest modeling by labeled LDA with topic features

Wenfeng Li, Xiaojie Wang, Rile Hu, Jilei Tian
{"title":"User interest modeling by labeled LDA with topic features","authors":"Wenfeng Li, Xiaojie Wang, Rile Hu, Jilei Tian","doi":"10.1109/CCIS.2011.6045022","DOIUrl":null,"url":null,"abstract":"As well known, the user interest is carried in the user's web browsing history that can be mined out. This paper presents an innovative method to extract user's interests from his/her web browsing history. We first apply an efficient algorithm to extract useful texts from the web pages in user's browsed URL sequence. We then proposed a Labeled Latent Dirichlet Allocation with Topic Feature (LLDA-TF) to mine user's interests from the texts. Unlike other works that need a lot of training data to train a model to adopt supervised information, we directly introduce the raw supervised information to the procedure of LLDA-TF. As shown in the experimental results, results given by LLDA-TF fit predefined categories well. Furthermore, LLDA-TF model can name the user interests by category words as well as a keyword list for each category.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As well known, the user interest is carried in the user's web browsing history that can be mined out. This paper presents an innovative method to extract user's interests from his/her web browsing history. We first apply an efficient algorithm to extract useful texts from the web pages in user's browsed URL sequence. We then proposed a Labeled Latent Dirichlet Allocation with Topic Feature (LLDA-TF) to mine user's interests from the texts. Unlike other works that need a lot of training data to train a model to adopt supervised information, we directly introduce the raw supervised information to the procedure of LLDA-TF. As shown in the experimental results, results given by LLDA-TF fit predefined categories well. Furthermore, LLDA-TF model can name the user interests by category words as well as a keyword list for each category.
利用带主题特征的标签LDA对用户兴趣进行建模
众所周知,用户的兴趣是承载在用户的网页浏览历史中,可以被挖掘出来。本文提出了一种从用户浏览历史中提取用户兴趣的创新方法。我们首先应用一种有效的算法从用户浏览的URL序列中提取有用的文本。然后,我们提出了一种带有主题特征的标记潜在狄利克雷分配方法(LLDA-TF)来从文本中挖掘用户的兴趣。与其他需要大量训练数据来训练模型以采用监督信息的工作不同,我们直接将原始的监督信息引入到LLDA-TF的过程中。实验结果表明,LLDA-TF给出的结果很好地拟合了预定义的分类。此外,LLDA-TF模型可以通过类别词命名用户兴趣,并为每个类别提供关键字列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信