Research of paper surface defects detection system based on blob algorithm

X. Qi, Xiaoting Li, Hailun Zhang
{"title":"Research of paper surface defects detection system based on blob algorithm","authors":"X. Qi, Xiaoting Li, Hailun Zhang","doi":"10.1109/ICINFA.2013.6720384","DOIUrl":null,"url":null,"abstract":"Effective recognition and localization of paper defect based on machine vision is the key issue for paper defect detection system. This paper proposed an improved algorithm by combination with Blob analysis algorithm and image preprocessing approach to detect the paper defects which exist in captured images by a linear charge coupled device (CCD) camera. First, the defected images are preprocessed, such as image denoising, image segmentation, connectivity analysis, and then extract effective paper textures: defect amount, regional area, long axis, short axis, central position and so on, meanwhile draw the minimum bounding rectangles. Compared with the traditional morphology algorithm and threshold segmentation and fractal feature algorithm, the improved algorithm is validated by a great deal of experimental results with high detection efficiency and defects localization accuracy.","PeriodicalId":250844,"journal":{"name":"2013 IEEE International Conference on Information and Automation (ICIA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2013.6720384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Effective recognition and localization of paper defect based on machine vision is the key issue for paper defect detection system. This paper proposed an improved algorithm by combination with Blob analysis algorithm and image preprocessing approach to detect the paper defects which exist in captured images by a linear charge coupled device (CCD) camera. First, the defected images are preprocessed, such as image denoising, image segmentation, connectivity analysis, and then extract effective paper textures: defect amount, regional area, long axis, short axis, central position and so on, meanwhile draw the minimum bounding rectangles. Compared with the traditional morphology algorithm and threshold segmentation and fractal feature algorithm, the improved algorithm is validated by a great deal of experimental results with high detection efficiency and defects localization accuracy.
基于blob算法的纸张表面缺陷检测系统研究
基于机器视觉的纸张缺陷有效识别与定位是纸张缺陷检测系统的关键问题。本文提出了一种结合Blob分析算法和图像预处理方法的改进算法,用于检测线电荷耦合器件(CCD)相机拍摄图像中存在的纸张缺陷。首先对缺陷图像进行图像去噪、图像分割、连通分析等预处理,提取有效的纸张纹理:缺陷量、区域面积、长轴、短轴、中心位置等,同时绘制最小边界矩形。与传统的形态学算法、阈值分割和分形特征算法相比,改进算法具有较高的检测效率和缺陷定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信