An efficient finite precision RBF-M neural network architecture using support vectors

R. Dogaru, I. Dogaru
{"title":"An efficient finite precision RBF-M neural network architecture using support vectors","authors":"R. Dogaru, I. Dogaru","doi":"10.1109/NEUREL.2010.5644089","DOIUrl":null,"url":null,"abstract":"This paper investigates the effects of using limited precision for efficient implementations of the RBF-M neural network. This architecture employs only simple arithmetic operators and is characterized by simple LMS training in an expanded feature space generated by RBF functions centered around support vectors selected via a simple algorithm. The classification performances of our low complexity, finite precision architecture are similar and even better to those obtained using the more complex SVM.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper investigates the effects of using limited precision for efficient implementations of the RBF-M neural network. This architecture employs only simple arithmetic operators and is characterized by simple LMS training in an expanded feature space generated by RBF functions centered around support vectors selected via a simple algorithm. The classification performances of our low complexity, finite precision architecture are similar and even better to those obtained using the more complex SVM.
基于支持向量的高效有限精度RBF-M神经网络结构
本文研究了使用有限精度对RBF-M神经网络有效实现的影响。该体系结构仅使用简单的算术运算符,其特点是在以简单算法选择的支持向量为中心的RBF函数生成的扩展特征空间中进行简单的LMS训练。我们的低复杂度、有限精度架构的分类性能与使用更复杂的支持向量机获得的分类性能相似甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信