Modeling of Target Shadows for SAR Image Classification

S. Papson, R. Narayanan
{"title":"Modeling of Target Shadows for SAR Image Classification","authors":"S. Papson, R. Narayanan","doi":"10.1109/AIPR.2006.27","DOIUrl":null,"url":null,"abstract":"A recent thrust of non-cooperative target recognition (NCTR) using synthetic aperture radar (SAR) has been to complement the extraction of scattering centers by incorporating information contained in the target shadow. When classifying targets based on the shadow region alone, it is essential that an image be well clustered into its respective shadow, highlight, and background regions. To obtain the segmentation, the intensity and spatial location of a pixel are modeled as a mixture of Gaussian distributions. Expectation-maximization (EM) is used to obtain the corresponding distributions for the three regions within a given image. Anisotropic smoothing is applied to smooth the input image as well as the posterior probabilities. A representation of the shadow boundary is developed in conjunction with a Hidden Markov Model (HMM) ensemble to obtain target classification. A variety of targets from the MSTAR database are used to test the performance of both the segmentation algorithm and classification structure.","PeriodicalId":375571,"journal":{"name":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2006.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A recent thrust of non-cooperative target recognition (NCTR) using synthetic aperture radar (SAR) has been to complement the extraction of scattering centers by incorporating information contained in the target shadow. When classifying targets based on the shadow region alone, it is essential that an image be well clustered into its respective shadow, highlight, and background regions. To obtain the segmentation, the intensity and spatial location of a pixel are modeled as a mixture of Gaussian distributions. Expectation-maximization (EM) is used to obtain the corresponding distributions for the three regions within a given image. Anisotropic smoothing is applied to smooth the input image as well as the posterior probabilities. A representation of the shadow boundary is developed in conjunction with a Hidden Markov Model (HMM) ensemble to obtain target classification. A variety of targets from the MSTAR database are used to test the performance of both the segmentation algorithm and classification structure.
SAR图像分类中目标阴影建模
利用合成孔径雷达(SAR)进行非合作目标识别(NCTR)的最新研究方向是将目标阴影中的信息与散射中心的提取相结合。当仅基于阴影区域对目标进行分类时,必须将图像很好地聚类到各自的阴影、高光和背景区域。为了获得分割,像素的强度和空间位置被建模为高斯分布的混合。期望最大化(EM)方法用于得到给定图像中三个区域的相应分布。各向异性平滑应用于平滑输入图像以及后验概率。结合隐马尔可夫模型(HMM)集成开发了阴影边界的表示,以获得目标分类。使用MSTAR数据库中的各种目标来测试分割算法和分类结构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信