A coupled joint eigenvalue decomposition algorithm for canonical polyadic decomposition of tensors

Rémi André, Xavier Luciani, E. Moreau
{"title":"A coupled joint eigenvalue decomposition algorithm for canonical polyadic decomposition of tensors","authors":"Rémi André, Xavier Luciani, E. Moreau","doi":"10.1109/SAM.2016.7569697","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel algorithm to compute the joint eigenvalue decomposition of a set of squares matrices. This problem is at the heart of recent direct canonical polyadic decomposition algorithms. Contrary to the existing approaches the proposed algorithm can deal equally with real or complex-valued matrices without any modifications. The algorithm is based on the algebraic polar decomposition which allows to make the optimization step directly with complex parameters. Furthermore, both factorization matrices are estimated jointly. This “coupled” approach allows us to limit the numerical complexity of the algorithm. We then show with the help of numerical simulations that this approach is suitable for tensors canonical polyadic decomposition.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we propose a novel algorithm to compute the joint eigenvalue decomposition of a set of squares matrices. This problem is at the heart of recent direct canonical polyadic decomposition algorithms. Contrary to the existing approaches the proposed algorithm can deal equally with real or complex-valued matrices without any modifications. The algorithm is based on the algebraic polar decomposition which allows to make the optimization step directly with complex parameters. Furthermore, both factorization matrices are estimated jointly. This “coupled” approach allows us to limit the numerical complexity of the algorithm. We then show with the help of numerical simulations that this approach is suitable for tensors canonical polyadic decomposition.
张量正则多进分解的耦合联合特征值分解算法
本文提出了一种计算一组方阵的联合特征值分解的新算法。这个问题是最近的直接规范多进分解算法的核心。与现有的方法不同,该算法不需要任何修改即可处理实值矩阵和复值矩阵。该算法基于代数极坐标分解,可以直接对复杂参数进行优化。此外,对两个分解矩阵进行了联合估计。这种“耦合”方法允许我们限制算法的数值复杂性。然后,我们通过数值模拟证明了这种方法适用于张量正则多进分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信