Deformed dimensional reduction

Ben Davison, Tudor Puadurariu
{"title":"Deformed dimensional reduction","authors":"Ben Davison, Tudor Puadurariu","doi":"10.2140/gt.2022.26.721","DOIUrl":null,"url":null,"abstract":"Since its first use by Behrend, Bryan, and Szendr\\H{o}i in the computation of motivic Donaldson-Thomas (DT) invariants of $\\mathbb{A}_{\\mathbb{C}}^3$, dimensional reduction has proved to be an important tool in motivic and cohomological DT theory. Inspired by a conjecture of Cazzaniga, Morrison, Pym, and Szendr\\H{o}i on motivic DT invariants, work of Dobrovolska, Ginzburg, and Travkin on exponential sums, and work of Orlov and Hirano on equivalences of categories of singularities, we generalize the dimensional reduction theorem in motivic and cohomological DT theory and use it to prove versions of the Cazzaniga-Morrison-Pym-Szendr\\H{o}i conjecture in these settings.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Since its first use by Behrend, Bryan, and Szendr\H{o}i in the computation of motivic Donaldson-Thomas (DT) invariants of $\mathbb{A}_{\mathbb{C}}^3$, dimensional reduction has proved to be an important tool in motivic and cohomological DT theory. Inspired by a conjecture of Cazzaniga, Morrison, Pym, and Szendr\H{o}i on motivic DT invariants, work of Dobrovolska, Ginzburg, and Travkin on exponential sums, and work of Orlov and Hirano on equivalences of categories of singularities, we generalize the dimensional reduction theorem in motivic and cohomological DT theory and use it to prove versions of the Cazzaniga-Morrison-Pym-Szendr\H{o}i conjecture in these settings.
变形尺寸缩小
自从Behrend, Bryan和Szendr\H{o}i在计算$\mathbb{A}_{\mathbb{C}}^3$的动机Donaldson-Thomas (DT)不变量时首次使用降维法以来,降维法已被证明是动机和上同调DT理论中的一个重要工具。受Cazzaniga、Morrison、Pym和Szendr\H{o}i关于动机DT不变量的猜想,Dobrovolska、Ginzburg和Travkin关于指数和的工作,以及Orlov和Hirano关于奇点类别等价的工作的启发,我们推广了动机和上同调DT理论中的降维定理,并用它来证明Cazzaniga-Morrison-Pym-Szendr\H{o}i猜想在这些情况下的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信