Towards a formal comparison of uncertainty handling

Cristina Ramos Flores, A. Jousselme, P. Costa
{"title":"Towards a formal comparison of uncertainty handling","authors":"Cristina Ramos Flores, A. Jousselme, P. Costa","doi":"10.23919/FUSION45008.2020.9190168","DOIUrl":null,"url":null,"abstract":"This paper explores the use of the Uncertainty Representation and Reasoning Evaluation Framework (URREF), a framework intended to change that state of affairs, in evaluating potential uncertainty representation approaches for a maritime Decision Support System. We revisit some comparison aspects discussed along the years and map them to the URREF. We illustrate the comparison on a simple maritime use case involving basic reasoning about threat assessment, with observations from partially reliable sources. The same fusion problem is modeled with the two uncertainty theories of Bayesian probability theory and evidence theory. Within the same framework, we consider two different reasoning schemes, Causal and Evidential, complemented with a source model of partial reliability. Comparison items are mapped to URREF ontology criteria of (Representation) Expressiveness and (Reasoning) Correctness. We highlight the criteria that can be useful in supporting systems developers in their choice of how to represent and manage uncertainty in information fusion processes, and propose some refinement to the URREF to capture handling of inconsistency.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores the use of the Uncertainty Representation and Reasoning Evaluation Framework (URREF), a framework intended to change that state of affairs, in evaluating potential uncertainty representation approaches for a maritime Decision Support System. We revisit some comparison aspects discussed along the years and map them to the URREF. We illustrate the comparison on a simple maritime use case involving basic reasoning about threat assessment, with observations from partially reliable sources. The same fusion problem is modeled with the two uncertainty theories of Bayesian probability theory and evidence theory. Within the same framework, we consider two different reasoning schemes, Causal and Evidential, complemented with a source model of partial reliability. Comparison items are mapped to URREF ontology criteria of (Representation) Expressiveness and (Reasoning) Correctness. We highlight the criteria that can be useful in supporting systems developers in their choice of how to represent and manage uncertainty in information fusion processes, and propose some refinement to the URREF to capture handling of inconsistency.
走向不确定性处理的形式化比较
本文探讨了不确定性表示和推理评估框架(URREF)的使用,这是一个旨在改变事务状态的框架,用于评估海事决策支持系统的潜在不确定性表示方法。我们回顾了多年来讨论的一些比较方面,并将它们映射到URREF中。我们对一个简单的海事用例进行了比较,该用例涉及威胁评估的基本推理,并与部分可靠来源的观察结果进行了比较。用贝叶斯概率论和证据论两种不确定性理论对同一融合问题进行建模。在同一框架内,我们考虑两种不同的推理方案,因果和证据,并辅以部分可靠性的源模型。比较项被映射到URREF(表示)表达性和(推理)正确性的本体标准。我们强调了在支持系统开发人员选择如何表示和管理信息融合过程中的不确定性时可能有用的标准,并对URREF提出了一些改进,以捕获不一致的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信