Hybrid Multiplicative Secret Sharing

Maki Yoshida
{"title":"Hybrid Multiplicative Secret Sharing","authors":"Maki Yoshida","doi":"10.1109/ITW48936.2021.9611361","DOIUrl":null,"url":null,"abstract":"A secret-sharing scheme is d-multiplicative if it allows the players to multiply d (rather than two) shared secrets (without recovering them) by locally converting their shares into an additive sharing of the product. In this work, the d-multiplicative secret-sharing (MSS) is extended to a hybrid MSS (HMSS), which is mainly designed for sharing d secrets against different access structures. A necessary and sufficient condition for n-player d-HMSS schemes to exist is presented. The condition is necessary for arbitrary (possibly inefficient or even nonlinear) secret-sharing schemes.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A secret-sharing scheme is d-multiplicative if it allows the players to multiply d (rather than two) shared secrets (without recovering them) by locally converting their shares into an additive sharing of the product. In this work, the d-multiplicative secret-sharing (MSS) is extended to a hybrid MSS (HMSS), which is mainly designed for sharing d secrets against different access structures. A necessary and sufficient condition for n-player d-HMSS schemes to exist is presented. The condition is necessary for arbitrary (possibly inefficient or even nonlinear) secret-sharing schemes.
混合乘法秘密共享
如果一个秘密共享方案允许玩家将d(而不是2)个共享的秘密(不需要恢复它们)相乘,通过局部地将他们的份额转换为产品的加性共享,那么这个方案就是d乘性的。本文将d乘式秘密共享(MSS)扩展为混合秘密共享(HMSS),主要用于针对不同访问结构共享d秘密。给出了n人d-HMSS方案存在的充分必要条件。这个条件对于任意的(可能是低效的甚至是非线性的)秘密共享方案是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信