MRI head segmentation for object based volume visualization

Zou Qingsong, K. C. Keong, Ng Wan Sing, Chen Yintao
{"title":"MRI head segmentation for object based volume visualization","authors":"Zou Qingsong, K. C. Keong, Ng Wan Sing, Chen Yintao","doi":"10.1109/ANZIIS.2001.974105","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new image segmentation approach for MRI of the head, which is a semi-automatic process. Unlike automatic segmentation or manual segmentation, the semi-automatic segmentation approach is a robust and interactive segmentation process. This approach carries out 3D volume data segmentation based on 2D image slices. By utilising the user-provided image mask, including areas of interest or structural information, the semi-automatic segmentation process can generate a new segmented volume dataset and structural information. The object based volume visualization method can use this segmented dataset and structural information to perform structure based manipulation and visualization, which cannot be achieved using a normal volume rendering method.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a new image segmentation approach for MRI of the head, which is a semi-automatic process. Unlike automatic segmentation or manual segmentation, the semi-automatic segmentation approach is a robust and interactive segmentation process. This approach carries out 3D volume data segmentation based on 2D image slices. By utilising the user-provided image mask, including areas of interest or structural information, the semi-automatic segmentation process can generate a new segmented volume dataset and structural information. The object based volume visualization method can use this segmented dataset and structural information to perform structure based manipulation and visualization, which cannot be achieved using a normal volume rendering method.
基于物体体积可视化的MRI头部分割
本文提出了一种新的头部MRI图像分割方法,该方法是一种半自动分割过程。与自动分割和人工分割不同,半自动分割是一种鲁棒性强的交互式分割过程。该方法基于二维图像切片进行三维体数据分割。通过利用用户提供的图像掩码,包括感兴趣的区域或结构信息,半自动分割过程可以生成新的分割体数据集和结构信息。基于对象的体可视化方法可以利用这些分割的数据集和结构信息进行基于结构的操作和可视化,这是普通体绘制方法无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信