3D pose estimation in high dimensional search spaces with local memorization

Weilan Luo, T. Yamasaki, K. Aizawa
{"title":"3D pose estimation in high dimensional search spaces with local memorization","authors":"Weilan Luo, T. Yamasaki, K. Aizawa","doi":"10.1109/PCS.2010.5702507","DOIUrl":null,"url":null,"abstract":"In this paper, a stochastic approach for extracting the articulated 3D human postures by synchronized multiple cameras in the high-dimensional configuration spaces is presented. Annealed Particle Filtering (APF) [1] seeks for the globally optimal solution of the likelihood. We improve and extend the APF with local memorization to estimate the suited kinematic postures for a volume sequence directly instead of projecting a rough simplified body model to 2D images. Our method guides the particles to the global optimization on the basis of local constraints. A segmentation algorithm is performed on the volumetric models and the process is repeated. We assign the articulated models 42 degrees of freedom. The matching error is about 6% on average while tracking the posture between two neighboring frames.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a stochastic approach for extracting the articulated 3D human postures by synchronized multiple cameras in the high-dimensional configuration spaces is presented. Annealed Particle Filtering (APF) [1] seeks for the globally optimal solution of the likelihood. We improve and extend the APF with local memorization to estimate the suited kinematic postures for a volume sequence directly instead of projecting a rough simplified body model to 2D images. Our method guides the particles to the global optimization on the basis of local constraints. A segmentation algorithm is performed on the volumetric models and the process is repeated. We assign the articulated models 42 degrees of freedom. The matching error is about 6% on average while tracking the posture between two neighboring frames.
基于局部记忆的高维搜索空间三维姿态估计
本文提出了一种基于同步多摄像机的高维人体姿态随机提取方法。退火粒子滤波(APF)[1]寻求似然的全局最优解。我们改进和扩展了局部记忆的APF,直接估计适合体序列的运动学姿态,而不是将粗糙的简化身体模型投影到二维图像上。我们的方法在局部约束的基础上引导粒子进行全局优化。在体积模型上执行分割算法,并重复该过程。我们赋予铰接模型42个自由度。在两个相邻帧之间跟踪姿态时,匹配误差平均约为6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信