Extremum Principles

R. Swendsen
{"title":"Extremum Principles","authors":"R. Swendsen","doi":"10.1093/oso/9780198853237.003.0015","DOIUrl":null,"url":null,"abstract":"This chapter derives the energy minimum principle from the entropy maximum principle. It postulates and consider the consequences of extensivity. From this are further derived minimum principles for the Helmholtz free energy, enthalpy, and Gibbs free energy. Because of its importance in engineering, exergy is also introduced, and the exergy minimum principle is justified. Analogously to these minimum principles, maximum principles can be derived for the Massieu functions from the entropy maximum principle. For the analysis of the entropy maximum principle, we isolated a composite system and released an internal constraint. Since the composite system was isolated, its total energy remained constant. The composite system went to the most probable macroscopic state after release of the internal constraint, and the total entropy went to its maximum.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853237.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter derives the energy minimum principle from the entropy maximum principle. It postulates and consider the consequences of extensivity. From this are further derived minimum principles for the Helmholtz free energy, enthalpy, and Gibbs free energy. Because of its importance in engineering, exergy is also introduced, and the exergy minimum principle is justified. Analogously to these minimum principles, maximum principles can be derived for the Massieu functions from the entropy maximum principle. For the analysis of the entropy maximum principle, we isolated a composite system and released an internal constraint. Since the composite system was isolated, its total energy remained constant. The composite system went to the most probable macroscopic state after release of the internal constraint, and the total entropy went to its maximum.
极值原理
本章从熵极大原理推导出能量最小原理。它假定并考虑了广泛性的后果。由此进一步导出了亥姆霍兹自由能、焓和吉布斯自由能的最小值原理。由于火用在工程中的重要性,也引入了火用最小原则。与这些最小原理类似,可以从熵最大原理推导出Massieu函数的最大原理。为了分析熵极大原理,我们分离了一个复合系统并释放了一个内部约束。由于复合体系是孤立的,其总能量保持不变。内部约束解除后,复合系统达到最可能的宏观状态,总熵达到最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信