Dynamic Modeling of a Quadruped With a Robotic Tail Using Virtual Work Principle

Yujiong Liu, P. Ben-Tzvi
{"title":"Dynamic Modeling of a Quadruped With a Robotic Tail Using Virtual Work Principle","authors":"Yujiong Liu, P. Ben-Tzvi","doi":"10.1115/DETC2018-86048","DOIUrl":null,"url":null,"abstract":"For utilizing robotic tail to stabilize and maneuver a quadruped, it is important to understand the mechanism of how the tail motion influences the quadruped motion which requires obtaining an analytic dynamic model. This paper presents a systematic methodology for modeling the dynamics of a general quadruped (capable of all 6 DOF motions) with a robotic pendulum tail based on the virtual work principle. The formulation of this model is motivated by robotic tail research, it can also be used as an alternative approach to model the quadruped dynamics other than using Lagrangian and Newton-Euler based methods. Numerical simulations are also conducted to verify both the forward and the inverse model.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For utilizing robotic tail to stabilize and maneuver a quadruped, it is important to understand the mechanism of how the tail motion influences the quadruped motion which requires obtaining an analytic dynamic model. This paper presents a systematic methodology for modeling the dynamics of a general quadruped (capable of all 6 DOF motions) with a robotic pendulum tail based on the virtual work principle. The formulation of this model is motivated by robotic tail research, it can also be used as an alternative approach to model the quadruped dynamics other than using Lagrangian and Newton-Euler based methods. Numerical simulations are also conducted to verify both the forward and the inverse model.
基于虚功原理的带尾四足机器人动力学建模
为了利用机器人尾巴稳定和操纵四足动物,了解尾巴运动如何影响四足动物运动的机理是非常重要的,这需要建立一个解析动力学模型。本文提出了一种基于虚功原理的机械摆尾四足机器人(可进行6自由度运动)动力学建模的系统方法。该模型的建立是受机器人尾巴研究的启发,它也可以作为除了拉格朗日和牛顿-欧拉方法之外的另一种方法来建模四足动物动力学。数值模拟验证了正、逆模型的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信