Advanced LARC Strategy of Maglev Planar Motor with GRU Neural Network Prediction

Tiansheng Ou, Chuxiong Hu, Yu Zhu, Ming Zhang
{"title":"Advanced LARC Strategy of Maglev Planar Motor with GRU Neural Network Prediction","authors":"Tiansheng Ou, Chuxiong Hu, Yu Zhu, Ming Zhang","doi":"10.1109/MESA55290.2022.10004479","DOIUrl":null,"url":null,"abstract":"To achieve high motion control accuracy and performance robustness simultaneously, this paper proposes an advanced learning adaptive robust control (LARC) strategy with gated recurrent unit (GRU) neural network prediction for magnetically levitated (maglev) planar motor. Adaptive model compensation and robust feedback control is firstly applied to guarantee robustness against parameter uncertainties and unknown disturbances. A GRU neural network is then trained with dataset collected from a practical maglev planar motor control system. The accurate predicted tracking error by the trained GRU neural network is compensated into the reference trajectory, which forms the proposed LARC strategy. Comparative experimental investigation validates that the proposed LARC strategy achieves comparable motion accuracy to iterative learning control (ILC) while avoiding undesired time-consuming iterations. Additionally, the proposed strategy outperforms ILC due to that satisfying control performance can be preserved even in the presence of trajectory variation, parameter uncertainty and unknown external disturbance.","PeriodicalId":410029,"journal":{"name":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA55290.2022.10004479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve high motion control accuracy and performance robustness simultaneously, this paper proposes an advanced learning adaptive robust control (LARC) strategy with gated recurrent unit (GRU) neural network prediction for magnetically levitated (maglev) planar motor. Adaptive model compensation and robust feedback control is firstly applied to guarantee robustness against parameter uncertainties and unknown disturbances. A GRU neural network is then trained with dataset collected from a practical maglev planar motor control system. The accurate predicted tracking error by the trained GRU neural network is compensated into the reference trajectory, which forms the proposed LARC strategy. Comparative experimental investigation validates that the proposed LARC strategy achieves comparable motion accuracy to iterative learning control (ILC) while avoiding undesired time-consuming iterations. Additionally, the proposed strategy outperforms ILC due to that satisfying control performance can be preserved even in the presence of trajectory variation, parameter uncertainty and unknown external disturbance.
基于GRU神经网络预测的磁悬浮平面电机先进LARC策略
为了同时实现高运动控制精度和性能鲁棒性,提出了一种基于门控递归单元(GRU)神经网络预测的平面磁悬浮电机高级学习自适应鲁棒控制(LARC)策略。首先采用自适应模型补偿和鲁棒反馈控制来保证对参数不确定性和未知干扰的鲁棒性。然后利用实际磁悬浮平面电机控制系统的数据集对GRU神经网络进行训练。训练后的GRU神经网络将准确预测的跟踪误差补偿到参考轨迹中,形成了所提出的LARC策略。对比实验验证了LARC策略在避免不必要的耗时迭代的同时,达到了与迭代学习控制(ILC)相当的运动精度。此外,该策略在存在轨迹变化、参数不确定性和未知外部干扰的情况下仍能保持令人满意的控制性能,优于ILC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信