Patrik Hansen, Marianela García Lozano, Farzad Kamrani, J. Brynielsson
{"title":"Real-Time Estimation of Heart Rate in Situations Characterized by Dynamic Illumination using Remote Photoplethysmography","authors":"Patrik Hansen, Marianela García Lozano, Farzad Kamrani, J. Brynielsson","doi":"10.1109/CVPRW59228.2023.00649","DOIUrl":null,"url":null,"abstract":"Remote photoplethysmography (rPPG) is a technique that aims to remotely estimate the heart rate of an individual using an RGB camera. Although several studies use the rPPG methodology, it is usually applied in a laboratory in a controlled environment, where both the camera and the subject are static, and the illumination is ideal for the task. However, applying rPPG in a real-life scenario is much more demanding, since dynamic illumination issues arise. The work presented in this paper introduces a framework to estimate the heart rate of an individual in real-time using an RGB camera in a situation characterized by dynamic illumination. Such situations occur, for example, when either the camera or the subject is moving, and/or the face visibility is limited. The framework uses a face detection program to extract regions of interest on an individual’s face. These regions are combined and constitute the input to a convolutional neural network, which is trained to estimate the heart rate in real-time. The method is evaluated on three publicly available datasets, and an in-house dataset specifically collected for the purpose of this study, that includes motions and dynamic illumination. The method shows good performance on all four datasets, outperforming other methods.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Remote photoplethysmography (rPPG) is a technique that aims to remotely estimate the heart rate of an individual using an RGB camera. Although several studies use the rPPG methodology, it is usually applied in a laboratory in a controlled environment, where both the camera and the subject are static, and the illumination is ideal for the task. However, applying rPPG in a real-life scenario is much more demanding, since dynamic illumination issues arise. The work presented in this paper introduces a framework to estimate the heart rate of an individual in real-time using an RGB camera in a situation characterized by dynamic illumination. Such situations occur, for example, when either the camera or the subject is moving, and/or the face visibility is limited. The framework uses a face detection program to extract regions of interest on an individual’s face. These regions are combined and constitute the input to a convolutional neural network, which is trained to estimate the heart rate in real-time. The method is evaluated on three publicly available datasets, and an in-house dataset specifically collected for the purpose of this study, that includes motions and dynamic illumination. The method shows good performance on all four datasets, outperforming other methods.