New Measurements of Water Dynamics and Sediment Transport along the Middle Reach of the Congo River and the Kasai Tributary

R. Tshimanga, M. Trigg, J. Neal, Preksides Ndomba, D. Hughes, A. Carr, P. Kabuya, G. Bola, C. A. Mushi, Jules T. Beya, Felly K. Ngandu, Gabriel M. Mokango, F. Mtalo, P. Bates
{"title":"New Measurements of Water Dynamics and Sediment Transport along the Middle Reach of the Congo River and the Kasai Tributary","authors":"R. Tshimanga, M. Trigg, J. Neal, Preksides Ndomba, D. Hughes, A. Carr, P. Kabuya, G. Bola, C. A. Mushi, Jules T. Beya, Felly K. Ngandu, Gabriel M. Mokango, F. Mtalo, P. Bates","doi":"10.1002/essoar.10505554.1","DOIUrl":null,"url":null,"abstract":"The Congo River provides potential for socio-economic growth at the regional scale, but with limited information on the river dynamics it is difficult for basin countries to benefit from this potential, and to invest in the development of water resources. In recent years, the number of hazards related to navigation and flooding has sharply increased, resulting in high loss of human lives as well as economic losses. Associated problems of river management in the Congo also include inefficiency in hydropower production, an increase in rate of river sedimentation and land use changes. Accurate information is needed to support adequate management strategies such as prediction of navigation water levels and sediment movement, and assessment of environmental impacts and engineering implications of water resources infrastructure. Modelling approaches and space observations have been used to understand the Congo River dynamics, but their effective application has proved difficult due to a lack of ground-based observational data for validation. Recent developments in data capture with acoustic Doppler technologies have considerably improved measurements of river dynamics. As well measuring river discharge, they also allow the analysis of the multiple hydrodynamic features occurring in fluvial systems. This paper presents the results of field measurement campaigns carried out in the middle reach of the Congo River and the Kasai tributary using state of the art measurement technology (ADCP, Sonar, GNSS) for investigation of large rivers. The measurements relate to river flow at multiple transects, river bathymetry, static and continuous water surface elevation, and targeted sediment sampling along the river. The paper provides a descriptive summary of the measurement results, a discussion on the application and performance of the equipment used in the Congo River, and lessons for future use of this equipment for measurements of large rivers in a data scarce environment such as the Congo Basin.","PeriodicalId":213250,"journal":{"name":"Congo Basin Hydrology, Climate, and Biogeochemistry","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Congo Basin Hydrology, Climate, and Biogeochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/essoar.10505554.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Congo River provides potential for socio-economic growth at the regional scale, but with limited information on the river dynamics it is difficult for basin countries to benefit from this potential, and to invest in the development of water resources. In recent years, the number of hazards related to navigation and flooding has sharply increased, resulting in high loss of human lives as well as economic losses. Associated problems of river management in the Congo also include inefficiency in hydropower production, an increase in rate of river sedimentation and land use changes. Accurate information is needed to support adequate management strategies such as prediction of navigation water levels and sediment movement, and assessment of environmental impacts and engineering implications of water resources infrastructure. Modelling approaches and space observations have been used to understand the Congo River dynamics, but their effective application has proved difficult due to a lack of ground-based observational data for validation. Recent developments in data capture with acoustic Doppler technologies have considerably improved measurements of river dynamics. As well measuring river discharge, they also allow the analysis of the multiple hydrodynamic features occurring in fluvial systems. This paper presents the results of field measurement campaigns carried out in the middle reach of the Congo River and the Kasai tributary using state of the art measurement technology (ADCP, Sonar, GNSS) for investigation of large rivers. The measurements relate to river flow at multiple transects, river bathymetry, static and continuous water surface elevation, and targeted sediment sampling along the river. The paper provides a descriptive summary of the measurement results, a discussion on the application and performance of the equipment used in the Congo River, and lessons for future use of this equipment for measurements of large rivers in a data scarce environment such as the Congo Basin.
刚果河中游和开赛河支流水动力和泥沙运输的新测量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信