Mining Web Usage Profiles from Proxy Logs: User Identification

Jing Xu, F. Xu, Fanshu Ma, Lei Zhou, Shuanglin Jiang, Zhibo Rao
{"title":"Mining Web Usage Profiles from Proxy Logs: User Identification","authors":"Jing Xu, F. Xu, Fanshu Ma, Lei Zhou, Shuanglin Jiang, Zhibo Rao","doi":"10.1109/DSC49826.2021.9346276","DOIUrl":null,"url":null,"abstract":"Personal web-surfing habits of individual users vary drastically. Thus, the selection and frequency of requested URLs can be viewed as an individual finger-print allowing to identify a user, which has many security and target marketing applications. In this paper, to model web usage, we derive web usage profiles for each user and employ instance-based classification methods to predict the most likely user in the monitored network. Thus, the proposed methods are scalable for large numbers of users. In our experimental evaluation, the accuracy of user identification is verified.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Personal web-surfing habits of individual users vary drastically. Thus, the selection and frequency of requested URLs can be viewed as an individual finger-print allowing to identify a user, which has many security and target marketing applications. In this paper, to model web usage, we derive web usage profiles for each user and employ instance-based classification methods to predict the most likely user in the monitored network. Thus, the proposed methods are scalable for large numbers of users. In our experimental evaluation, the accuracy of user identification is verified.
从代理日志中挖掘Web使用概况:用户识别
个人用户的上网习惯差别很大。因此,所请求的url的选择和频率可以被视为允许识别用户的单个指纹,这具有许多安全性和目标营销应用程序。在本文中,为了对web使用进行建模,我们导出了每个用户的web使用概况,并采用基于实例的分类方法来预测被监控网络中最可能的用户。因此,所提出的方法可扩展到大量用户。在我们的实验评估中,验证了用户识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信