An Efficient QAOA via a Polynomial QPU-Needless Approach

F. Chicano, Z. Dahi, Gabriel Luque
{"title":"An Efficient QAOA via a Polynomial QPU-Needless Approach","authors":"F. Chicano, Z. Dahi, Gabriel Luque","doi":"10.1145/3583133.3596409","DOIUrl":null,"url":null,"abstract":"The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem's expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today's QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some k-bounded pseudo-Boolean problems, optimizing the exact problem's expectation value can be done in polynomial time using a classical computer.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem's expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today's QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some k-bounded pseudo-Boolean problems, optimizing the exact problem's expectation value can be done in polynomial time using a classical computer.
基于多项式无需qpu方法的高效QAOA
量子近似优化算法(QAOA)是一种混合量子算法,描述为同时表示问题和混合哈密顿量的分析。两者都是在量子机器/模拟器上执行的可参数化的酉变换,其参数使用经典设备迭代优化以优化问题的期望值。为此,在每次QAOA迭代中,大多数文献使用量子机/模拟器来测量QAOA结果。然而,考虑到量子机器几乎不受约束(例如长队列,有限的量子位等),这构成了严重的瓶颈,同样,量子模拟在处理需要更多量子位的大问题时也会导致内存使用量呈指数级增长。这些限制使得今天的QAOA实现不切实际,因为很难在合理可接受的时间/资源内获得好的解决方案。考虑到这些事实,本工作提出了一种新的方法,主要有两个贡献,包括(I)在QAOA优化阶段消除了访问量子设备或大型经典机器的需要,以及(II)确保在处理一些有k界的伪布尔问题时,可以使用经典计算机在多项式时间内优化精确问题的期望值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信