Application of optimal set partitioning theory to solving problems of artificial intelligence and pattern recognition

E. Kiseleva, O. Prytomanova, L. Hart
{"title":"Application of optimal set partitioning theory to solving problems of artificial intelligence and pattern recognition","authors":"E. Kiseleva, O. Prytomanova, L. Hart","doi":"10.20535/srit.2308-8893.2021.4.07","DOIUrl":null,"url":null,"abstract":"The paper substantiates the possibility of applying the mathematical theory of continuous problems of optimal partitioning of sets of n-dimensional Euclidean space, which belong to the non-classical problems of infinite-dimensional mathematical programming, to the solution of problems of artificial intelligence and pattern recognition. The problems of pattern recognition both in conditions of certainty and in conditions of uncertainty are formulated. A particular attention is paid to the application of methods of the theory of optimal partitioning for the construction of fuzzy Voronoi diagrams. Examples of constructing fuzzy Voronoi diagrams with the optimal placement of generating points are given.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2021.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper substantiates the possibility of applying the mathematical theory of continuous problems of optimal partitioning of sets of n-dimensional Euclidean space, which belong to the non-classical problems of infinite-dimensional mathematical programming, to the solution of problems of artificial intelligence and pattern recognition. The problems of pattern recognition both in conditions of certainty and in conditions of uncertainty are formulated. A particular attention is paid to the application of methods of the theory of optimal partitioning for the construction of fuzzy Voronoi diagrams. Examples of constructing fuzzy Voronoi diagrams with the optimal placement of generating points are given.
最优集划分理论在解决人工智能和模式识别问题中的应用
本文证明了将n维欧几里德空间集最优划分连续问题的数学理论应用于求解人工智能和模式识别问题的可能性,该问题属于无限维数学规划的非经典问题。提出了确定条件和不确定条件下的模式识别问题。特别注意了最优划分理论方法在模糊Voronoi图构造中的应用。给出了用生成点的最优位置构造模糊Voronoi图的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信