Lucas Pascotti Valem, Vinicius Atsushi Sato Kawai, Vanessa Helena Pereira-Ferrero, D. C. G. Pedronette
{"title":"A Novel Rank Correlation Measure for Manifold Learning on Image Retrieval and Person Re-ID","authors":"Lucas Pascotti Valem, Vinicius Atsushi Sato Kawai, Vanessa Helena Pereira-Ferrero, D. C. G. Pedronette","doi":"10.1109/ICIP46576.2022.9898060","DOIUrl":null,"url":null,"abstract":"Effectively measuring similarity among data samples represented as points in high-dimensional spaces remains a major challenge in retrieval, machine learning, and computer vision. In these scenarios, unsupervised manifold learning techniques grounded on rank information have been demonstrated to be a promising solution. However, various methods rely on rank correlation measures, which often depend on a proper definition of neighborhood size. On current approaches, this definition may lead to a reduction in the final desired effectiveness. In this work, a novel rank correlation measure robust to such variations is proposed for manifold learning approaches. The proposed measure is suitable for diverse scenarios and is validated on a Manifold Learning Algorithm based on Correlation Graph (CG). The experimental evaluation considered 6 datasets on general image retrieval and person Re-ID, achieving results superior to most state-of-the-art methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Effectively measuring similarity among data samples represented as points in high-dimensional spaces remains a major challenge in retrieval, machine learning, and computer vision. In these scenarios, unsupervised manifold learning techniques grounded on rank information have been demonstrated to be a promising solution. However, various methods rely on rank correlation measures, which often depend on a proper definition of neighborhood size. On current approaches, this definition may lead to a reduction in the final desired effectiveness. In this work, a novel rank correlation measure robust to such variations is proposed for manifold learning approaches. The proposed measure is suitable for diverse scenarios and is validated on a Manifold Learning Algorithm based on Correlation Graph (CG). The experimental evaluation considered 6 datasets on general image retrieval and person Re-ID, achieving results superior to most state-of-the-art methods.