Xitao Wen, Chunxiao Diao, Xun Zhao, Yan Chen, Erran L. Li, Bo Yang, Kai Bu
{"title":"Compiling minimum incremental update for modular SDN languages","authors":"Xitao Wen, Chunxiao Diao, Xun Zhao, Yan Chen, Erran L. Li, Bo Yang, Kai Bu","doi":"10.1145/2620728.2620733","DOIUrl":null,"url":null,"abstract":"Measurement results show that updating rules on switches poses major latency overhead during the course of the policy update. However, current SDN policy compilers do not handle policy updates well and generate large amount of redundant rule updates, most of which modify only the priority field. Our analysis shows that the lack of knowledge on the rule dependency and the consecutively distributed priority numbers are the fundamental problems behind the redundancy. In this paper, we propose to tackle the problems through 1) an extended policy compiler that builds rule dependency along with the compilation, and 2) an online optimization algorithm that maintains a scattered priority distribution. Our preliminary evaluation demonstrates that our proposed patch can eliminate nearly all the priority updates.","PeriodicalId":309136,"journal":{"name":"Proceedings of the third workshop on Hot topics in software defined networking","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third workshop on Hot topics in software defined networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2620728.2620733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Measurement results show that updating rules on switches poses major latency overhead during the course of the policy update. However, current SDN policy compilers do not handle policy updates well and generate large amount of redundant rule updates, most of which modify only the priority field. Our analysis shows that the lack of knowledge on the rule dependency and the consecutively distributed priority numbers are the fundamental problems behind the redundancy. In this paper, we propose to tackle the problems through 1) an extended policy compiler that builds rule dependency along with the compilation, and 2) an online optimization algorithm that maintains a scattered priority distribution. Our preliminary evaluation demonstrates that our proposed patch can eliminate nearly all the priority updates.