Combinatorial Auctions with Interdependent Valuations: SOS to the Rescue

Alon Eden, M. Feldman, A. Fiat, Kira Goldner, Anna R. Karlin
{"title":"Combinatorial Auctions with Interdependent Valuations: SOS to the Rescue","authors":"Alon Eden, M. Feldman, A. Fiat, Kira Goldner, Anna R. Karlin","doi":"10.1145/3328526.3329759","DOIUrl":null,"url":null,"abstract":"We study combinatorial auctions with interdependent valuations, where each agent i has a private signal si that captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: This work was supported by the Israel Science Foundation [Grant 317/17], the National Science Foundation [Grant CCF-1813135], the Air Force Office of Scientific Research [Grant FA9550-20-1-0212], and the H2020 European Research Council [Grant 866132].","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328526.3329759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We study combinatorial auctions with interdependent valuations, where each agent i has a private signal si that captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: This work was supported by the Israel Science Foundation [Grant 317/17], the National Science Foundation [Grant CCF-1813135], the Air Force Office of Scientific Research [Grant FA9550-20-1-0212], and the H2020 European Research Council [Grant 866132].
组合拍卖与相互依赖的估值:紧急救援
我们研究了具有相互依赖估值的组合拍卖,其中每个代理i都有一个私有信号si,该信号si捕获了其私有信息,每个代理的估值函数依赖于整个信号配置文件,[公式:见文本]。经济学文献表明,相互依赖模型产生了强烈的不可能结果,并确定了可以获得最优解的假设。计算机科学文献提供了简单的单参数设置的近似结果(主要是单项目拍卖或矩阵可行性约束)。这两种文献主要集中于满足称为单交叉(或其变体)的技术条件的估值。我们考虑了信号上的子模(SOS)估值(没有强加任何单一的交叉类型假设),并为多维组合拍卖提供了第一个福利近似保证,这些拍卖是由普遍事后激励兼容的、个体理性的机制实现的。我们的主要结果是(i)对于任何具有单维信号和SOS估值的单参数向下封闭设置的四近似;(ii)具有多维信号和可分离sos估值的任何组合拍卖的四近似;以及(iii) (k + 3)和(2 log(k) + 4)近似,分别适用于具有k大小信号空间的任何具有单维信号的组合拍卖,用于SOS和强SOS估值。我们所有的结果都扩展到SOS的参数化版本,d-近似SOS,同时失去了一个依赖于d的因素。资助:这项工作得到了以色列科学基金会[Grant 317/17],国家科学基金会[Grant CCF-1813135],空军科学研究办公室[Grant FA9550-20-1-0212]和H2020欧洲研究委员会[Grant 866132]的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信